Regional sustainability networks in the Netherlands are rooted in regionalculture and have an emphasis on social learning and effective collaboration between multiple actors. The national ‘Duurzaam Door’ (Moving Forward Sustainably) Policy Programme regards these networks as generative governance arrangements where new knowledge, actions and relations can co-evolve together with new insights in governance and learning within sustainability transitions. In order to understand the dynamics of the learning in these networks we have monitored emergent properties of social learning between 2014 and 2016. Our focus is particularly on the interrelated role of trust, commitment, reframing and reflexivity. Our aim is to better understand the role and the dynamics of these emergent properties and to see which actors and roles can foster the effectiveness of social learning in regional transitions towards more sustainable ways of living. We used a retrospective analysis with Reflexive Monitoring in Action (RMA), which we combined with the Most Significant Change approach. We found that reflexivity in particularis a critical property at moments that can make or break the process.
MULTIFILE
Our paper investigates the microfoundations of sustainable entrepreneurship and aims to shed light on trade-offs made in decisions about social, ecological and economic sustainability. Balancing the three dimensions of sustainability (social, ecological and economic) inherently requires choices in which one dimension or another has less optimal outcomes. There is not much known about the rationale that sustainable entrepreneurs use for making such trade-offs. Thus, we ask how does entrepreneurial orientation affect decisions and trade-offs on sustainability impact? Our study is an exploratory, qualitative study of 24 sustainable entrepreneurs. We collected data about entrepreneurial orientation and sustainability trade-offs and held in-depth interviews with a subsample of six firms. We conducted a cluster analysis based on four entrepreneurial orientations (innovativeness, proactiveness, riskiness and futurity) and three sustainability trade-off dimensions (environmental, social and economic). From the findings, we derive a typology of three types of sustainable entrepreneurs: green-conflicted, humanitarian-oriented and holistically-oriented. We uncover salient characteristics and aspects of entrepreneurial orientation in relation to trade-off decisions. We find that the entrepreneurs accept slower economic growth or lower performance in order to maintain the integrity of their social and ecological principles and values.
The textiles and apparel industry is a major contributor to economic development while at the same time being one of the most polluting industries due to its lengthy supply chain and resource intensive production operations. To address these sustainability challenges, digitalization is seen as one of the potential solutions. Using the lens of sustainability and digitalization in Supply Chain Management (SCM), this paper analyses the sustainability and digitalization status of Dutch textile and apparel firms. We used a mixed methodology of quantitative text mining of 94 Dutch textile and apparel firms as well as qualitative thematic and coding analysis of experts’ views and opinions on sustainability and digitalization in the Dutch textiles and apparel industry. Quantitative analysis of website data shows that Dutch textile and apparel firms predominantly communicate the environmental, to a lesser extent social, and least of all economic sustainability factors. Keyword analysis also shows that the use of technological keyword indicators is less prominent, while certain technologies such as IoT, sensors and blockchain correlate mostly to environmental sustainability factors. Moreover, qualitative analysis reveals that to address sustainability via digitalization, it is important to link sustainability goals to Key Performance Indicators, which requires data for traceability. We recommend firms to: (1) re-evaluate their business models and assess the extent traceability can be incorporated in their sustainability strategy; (2) enhance stakeholder collaboration within and outside the supply chain to utilize traceability; and (3) proactively use traceability information to improve transparency and accountability to meet legal requirements and address greenwashing. This study contributes to literature by showing the importance of traceability for (a) linking sustainability and digitalization in SCM, b) achieving the ultimate goals of transparency and accountability, and c) predicting demand and supply to address overproduction and waste in the textiles and apparel sector.
MULTIFILE
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Collaborative networks for sustainability are emerging rapidly to address urgent societal challenges. By bringing together organizations with different knowledge bases, resources and capabilities, collaborative networks enhance information exchange, knowledge sharing and learning opportunities to address these complex problems that cannot be solved by organizations individually. Nowhere is this more apparent than in the apparel sector, where examples of collaborative networks for sustainability are plenty, for example Sustainable Apparel Coalition, Zero Discharge Hazardous Chemicals, and the Fair Wear Foundation. Companies like C&A and H&M but also smaller players join these networks to take their social responsibility. Collaborative networks are unlike traditional forms of organizations; they are loosely structured collectives of different, often competing organizations, with dynamic membership and usually lack legal status. However, they do not emerge or organize on their own; they need network orchestrators who manage the network in terms of activities and participants. But network orchestrators face many challenges. They have to balance the interests of diverse companies and deal with tensions that often arise between them, like sharing their innovative knowledge. Orchestrators also have to “sell” the value of the network to potential new participants, who make decisions about which networks to join based on the benefits they expect to get from participating. Network orchestrators often do not know the best way to maintain engagement, commitment and enthusiasm or how to ensure knowledge and resource sharing, especially when competitors are involved. Furthermore, collaborative networks receive funding from grants or subsidies, creating financial uncertainty about its continuity. Raising financing from the private sector is difficult and network orchestrators compete more and more for resources. When networks dissolve or dysfunction (due to a lack of value creation and capture for participants, a lack of financing or a non-functioning business model), the collective value that has been created and accrued over time may be lost. This is problematic given that industrial transformations towards sustainability take many years and durable organizational forms are required to ensure ongoing support for this change. Network orchestration is a new profession. There are no guidelines, handbooks or good practices for how to perform this role, nor is there professional education or a professional association that represents network orchestrators. This is urgently needed as network orchestrators struggle with their role in governing networks so that they create and capture value for participants and ultimately ensure better network performance and survival. This project aims to foster the professionalization of the network orchestrator role by: (a) generating knowledge, developing and testing collaborative network governance models, facilitation tools and collaborative business modeling tools to enable network orchestrators to improve the performance of collaborative networks in terms of collective value creation (network level) and private value capture (network participant level) (b) organizing platform activities for network orchestrators to exchange ideas, best practices and learn from each other, thereby facilitating the formation of a professional identity, standards and community of network orchestrators.
i-DEMO aims at supporting EU tourism professionals in acquiring and developing key competences in game-based tourism in order to foster innovation and improve overall tourism organizations’ performance by: enhancing specific skills and competences in game-based tourism; designing an i-DEMO course "Game-based Tourism"; creating an i-DEMO toolkit to apply gamification to tourism; enhancing the application and replicability potential of innovative game-based solutions.Societal IssueThe tourism and hospitality industry has rapidly evolved with technological advancements, especially through ICT and the rise of the sharing economy. Digital platforms, social media, and mobile technologies have popularized gamification in tourism, creating engaging experiences and enhancing consumer loyalty. Gamification immerses tourists in simulated travel worlds, improving satisfaction, behavior, and involvement. Benefits include increased visitor engagement, loyalty, improved marketing, and support for sustainable tourism. However, despite its potential, gamification adoption remains limited in tourism. To address this, initiatives like i-DEMO aim to enhance skills and competences, improving employability in the evolving tourism market.Benefit to societyThe benefits that gamification can offer in the travel and tourism industry are: 1: More Engaged Visitors: we must not underestimate the immersion level that games can offer to travelers; 2: Increased Visitor Loyalty: when somebody is truly satisfied with their experience, they are much more likely to come back; 3: Improved Marketing for Hospitality and Tourism: tourism and hospitality have been the biggest ones impacted by all of the lockdown restrictions; consequently they are using all kinds of marketing methods to motivate people to start travelling; 4: Sustainability: gamification could help promote more environmentally, socially and culturally sustainable forms of tourism, supporting the twin green and digital transition.