The design and mission requirements of aero vehicles, which vary on a day-to-day basis, have become major study concerns in the burgeoning aviation sector. In addition to the design and mission criteria that must be met in an aero vehicle design, the designers' primary goals are to construct original, innovative, environmentally friendly, fuel-efficient, and sustainable designs. In this study, a detailed conceptual design of a helicopter that does not need a notable runway for operation and is limited by mission and design requirements is offered. Within the scope of this research, a competitor analysis study was undertaken in accordance with the defined criteria, and design approaches were chosen based on the outcomes of competitor analysis. In addition, this research, which looks for an environmentally friendly and sustainable design, was developed with the aviation industry's demands in mind by analyzing the International Helicopter Safety Team's (IHST) data. As a result of the reports analyzed and considering the causes and consequences of accidents that have happened, the objective of the design research was to achieve a sustainable, ecologically friendly, and fuel-efficient design by reducing the number of accidents and damage. The planning and design processes as a result of this examination are essential as a step towards the helicopter being an original design and in the context of solution methodologies. This archetypal design aims to shed light on helicopter design studies and serve as a roadmap for future research.
MULTIFILE
The rapidly evolving aviation environment, driven by the Fourth Industrial Revolution, encompasses smart operations, communication technology, and automation. Airports are increasingly developing new autonomous innovation strategies to meet sustainability goals and address future challenges, such as shifting labor markets, working conditions, and digitalization (ACI World, 2019). This paper explores high-level governance strategies, a benchmarking study, that facilitates this transition. It aims to identify the key characteristics and features of the benchmarking study applicable to the development of autonomous airside operations. It also examines areas for improvement in operations, focusing on Key Performance Areas (KPAs) and strategic objectives related to airside automation. The findings highlight several essential performance areas and formulate it to a tailored benchmarking study that airports or aviation stakeholders can adopt to develop automation in airside operations. These criteria and features are summarized into a benchmarking framework that reflects strategy objectives. This paper contributes a valuable benchmarking methodology, supporting the growing global aviation demand for improvements toward more sustainable and smart autonomous airside operations. This outcome motivates aviation stakeholders to innovate to meet environmental and social sustainability goals.
Emissions from aviation will continue to increase in the future, in contradiction of global climate policy objectives. Yet, airlines and airline organisations suggest that aviation will become climatically sustainable. This paper investigates this paradox by reviewing fuel-efficiency gains since the 1960s in comparison to aviation growth, and by linking these results to technology discourses, based on a two-tiered approach tracing technology-focused discourses over 20 years (1994-2013). Findings indicate that a wide range of solutions to growing emissions from aviation have been presented by industry, hyped in global media, and subsequently vanished to be replaced by new technology discourses. Redundant discourses often linger in the public domain, where they continue to be associated with industry aspirations of 'sustainable aviation' and 'zero-emission flight'. The paper highlights and discusses a number of technology discourses that constitute 'technology myths', and the role these 'myths' may be playing in the enduring but flawed promise of sustainable aviation. We conclude that technology myths require policy-makers to interpret and take into account technical uncertainty, which may result in inaction that continues to delay much needed progress in climate policy for aviation.
LINK
Ons voorstel ‘Biobased Sustainable Aviation Fuel’, richt zich op het ontwikkelen van een nieuwe productieroute voor sustainable aviation fuels (SAFs). Hiermee wordt invulling gegeven aan de behoefte van de luchtvaartindustrie om alternatieve productieroutes voor SAF te ontwikkelen. Deze behoefte komt voort uit het verplicht bijmengen van SAF in conventionele kerosine. Ook hebben bestaande routes voor SAFs te maken met oplopende tekorten in grondstoffen. De productieroute in dit project maakt gebruik van vetzuren, waarmee een veelheid van afvalstromen kan worden verwerkt naar brandstoffen. De vetzuren uit dit project worden geproduceerd door ChainCraft uit organische reststromen via fermentatie. ChainCraft is begonnen als startup vanuit Wageningen Universiteit en heeft bewezen per jaar ongeveer 2000 ton vetzuren te kunnen produceren. Met een chemische reactie worden deze vetzuren omgezet naar ketonen. Dit wordt ketonisatie genoemd. Deze ketonen kunnen opgewerkt worden naar SAF, maar kunnen ook andere chemische toepassingen hebben, zoals het vervangen van palmolie. Het keton dat ontstaat is dus een tussenproduct waarmee verschillende markten bedient kunnen worden. Dit is van belang voor ChainCraft dat nieuwe markten voor haar vetzuren wil ontsluiten. De belangrijkste te ontwikkelen stap in deze productieroute is de verbetering en optimalisatie van de ketonisatiereactie. Dit wordt gedaan door de Hogeschool Rotterdam bij het CoE HRTech, binnen het cluster Verduurzaming Industrie en de opleiding Chemische Technologie. Bij de ketonisatiereactie ontstaat calciumhydroxide als bijproduct. Door dit terug te voeren naar het fermentatieproces kunnen de integrale proceskosten verlaagd worden en de milieu impact gereduceerd. Deze verbeterde fermentatie wordt door ChainCraft geanalyseerd. De te verwachten milieubesparing is 67% minder broeikasgasemissies ten opzichte van petrochemische kerosine. De te verwachten productiekosten zijn vergelijkbaar met gangbare SAFs. Naast ChainCraft en de Hogeschool Rotterdam wordt het voorstel gesteund door SkyNRG. SkyNRG is sinds 2010 de wereldwijde leider op het gebied van SAFs.
Since March 2013, Paul Peeters is a member of the ICAO/CAEP Working Group 3, which is responsible for setting a new fuel efficiency standard for of civil aviation. He does so for the International Coalition for Sustainable Aviation (ICSA). ICSA was established in 1998 by a group of national and international environmental NGOs as official observers. Since its inception, ICSA has contributed to CAEP’s work on technical means to reduce emissions and noise, the role of market-based measures, supporting economic and environmental analysis, modelling and forecasting, and ICAO’s carbon calculator. It has also been invited to present its views at ICAO workshops on carbon markets and bio-fuels, and has presented to the high-level Group on Internation Aviation and Climate Change (GIACC). ICSA uses the expertise within its NGO membership to formulate its co-ordinated positions. To gain the broadest level of understanding and input from environmental NGOs, ICSA communicates with, and invites comment from, other NGO networks and bodies working in related areas. ICSA’s participation in ICAO and CAEP meetings is currently provided by the Aviation Environment Federation (AEF), the International Council for Clean Transportation (ICCT) and Transport and Environment (T&E). See http://www.icsa-aviation.org