This manifesto describes the notion of sustainable development according to its basic appeal for economic, social and environmental value-creation, together with the implications of its meaning at the level of the individual (the manager), the organisation (the business) and society. As sustainable tourism is focused on the long term, foresight is used to develop four scenarios for a sustainable tourism industry in 2040: “back to the seventies”, “captured in fear”, “unique in the world”, and “shoulders to the wheel”. The implications of the scenarios are mapped for four distinct types of organisational DNA: the blue organisation focusing on quality, professionalism and efficiency, the red organisation for whom challenge, vision and change are most important, the yellow organisation addressing energy, optimism and growth, and the green organisation which is led by care, tradition and security. The manifest concludes with strategic propositions for tourism organisations in each of the four business types and each of the four scenarios.
The increasing demand for Prunus africana resources is an opportunity for its conservation and commercial use to support livelihoods in Africa. The objective for this study was to investigate major steps to advance production of P. africana for long-term commercial use in Uganda. Specific objectives were to explore potential production schemes, setbacks in production and strategies to advance it. The study was done by review of literature, documents and interviews with experts. Results indicated Agroforestry and large plantations to be useful schemes for production. Identified setbacks are: low trade in P. africana, unknown returns from production, competing land uses, long growth period, limited market assurance and information. The lack of a resource assessment for P. africana in forests contributes to its low trade which undermines related economic benefits for national development and incentives to commercial production. We propose that a national Quantitative resource assessment of P. africana in forests is one of the crucial steps that should be undertaken to carefully organise and advance sustainable trade to provide rational incentives for commercial production. Subsequently, production should be localised in suitable sites and producers be organised into cooperatives. Further research to improve returns from commercial production of P. africana is needed.
MULTIFILE
At present, leading international agencies, such as the United Nations Environmental Programme, are largely focused on what they claim to be ‘win-win’ scenarios of ‘sustainable development’ rhetoric. These combine social, economic and environmental objectives. However, as noted by the ‘Scientists’ Warning to Humanity’, environmental integrity is the essential precondition for the healthy functioning of social and economic systems, and thus environmental protection needs to be prioritized in policy and practice. Ecological sustainability cannot be reached without realizing that population growth and economic growth, with attendant increased rates of depletion of natural resources, pollution, and general environmental degradation, are the root causes of unsustainability. This article argues that to strategically address ecological unsustainability, the social, economic and political barriers to addressing the current economic model and population growth need to be overcome. Strategic solutions proposed to the current neoliberal economy are generic – namely, degrowth, a steady-state economy, and a ‘circular economy’. Solutions to demographic issues must be sensitive to the countries' cultural, social, political and economic factors to be effective as fertility differs from country to country, and culture to culture. As discussed here, Mediterranean countries have the lowest fertility in the world, while many countries in Africa, and some in Asia, South America have stable but consistently high birthrates. This is discussed using three case studies - Tanzania, Italy, and Cambodia, focusing on the "best case" policy practice that offers more realistic hope for successful sustainability. https://doi.org/10.1007/s41207-019-0139-4 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Circular BIOmass CAScade to 100% North Sea Region (NSR) economic activity and growth are mostly found in urban areas. Rural NSR regions experience population decline and negative economic growth. The BIOCAS project expects revitalizing and greening of rural areas go hand in hand. BIOCAS will develop rural areas of the NSR into smart specialized regions for integrated and local valorization of biomass. 13 Commercial running Bio-Cascade-Alliances (BCA’s) will be piloted, evaluated and actively shared in the involved regions. These proven concepts will accelerate adoption of high to low value bio-cascading technologies and businesses in rural regions. The project connects 18 regional initiatives around technologies, processes, businesses for the conversion of biomass streams. The initiatives collaborate in a thematic approach: Through engineering, value chain assessments, BCA’s building, partners tackle challenges that are shared by rural areas. I.e. unsustainable biomass use, a mineral surplus and soil degradation, deprivation of potentially valuable resources, and limited involvement of regional businesses and SMEs in existing bio-economy developments. The 18 partners are strongly embedded in regional settings, connected to many local partners. They will align stakeholders in BCA’s that would not have cooperated without BIOCAS interventions. Triple helix, science, business and governmental input will realize inclusive lasting bio cascade businesses, transforming costly waste to resources and viable business.Interreg IVB North Sea Region Programme: €378,520.00, fEC % 50.00%1/07/17 → 30/06/21
Client: Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW) Funder: RAAK (Regional Attention and Action for Knowledge circulation) The RAAK scheme is managed by the Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW). Early 2013 the Centre for Sustainable Tourism and Transport started work on the RAAK-MKB project ‘Carbon management for tour operators’ (CARMATOP). Besides NHTV, eleven Dutch SME tour operators, ANVR, HZ University of Applied Sciences, Climate Neutral Group and ECEAT initially joined this 2-year project. The consortium was later extended with IT-partner iBuildings and five more tour operators. The project goal of CARMATOP was to develop and test new knowledge about the measurement of tour package carbon footprints and translate this into a simple application which allows tour operators to integrate carbon management into their daily operations. By doing this Dutch tour operators are international frontrunners.Why address the carbon footprint of tour packages?Global tourism contribution to man-made CO2 emissions is around 5%, and all scenarios point towards rapid growth of tourism emissions, whereas a reverse development is required in order to prevent climate change exceeding ‘acceptable’ boundaries. Tour packages have a high long-haul and aviation content, and the increase of this type of travel is a major factor in tourism emission growth. Dutch tour operators recognise their responsibility, and feel the need to engage in carbon management.What is Carbon management?Carbon management is the strategic management of emissions in one’s business. This is becoming more important for businesses, also in tourism, because of several economical, societal and political developments. For tour operators some of the most important factors asking for action are increasing energy costs, international aviation policy, pressure from society to become greener, increasing demand for green trips, and the wish to obtain a green image and become a frontrunner among consumers and colleagues in doing so.NetworkProject management was in the hands of the Centre for Sustainable Tourism and Transport (CSTT) of NHTV Breda University of Applied Sciences. CSTT has 10 years’ experience in measuring tourism emissions and developing strategies to mitigate emissions, and enjoys an international reputation in this field. The ICT Associate Professorship of HZ University of Applied Sciences has longstanding expertise in linking varying databases of different organisations. Its key role in CARMATOP was to create the semantic wiki for the carbon calculator, which links touroperator input with all necessary databases on carbon emissions. Web developer ibuildings created the Graphical User Interface; the front end of the semantic wiki. ANVR, the Dutch Association of Travel Agents and Tour operators, represents 180 tour operators and 1500 retail agencies in the Netherlands, and requires all its members to meet a minimum of sustainable practices through a number of criteria. ANVR’s role was in dissemination, networking and ensuring CARMATOP products will last. Climate Neutral Group’s experience with sustainable entrepreneurship and knowledge about carbon footprint (mitigation), and ECEAT’s broad sustainable tourism network, provided further essential inputs for CARMATOP. Finally, most of the eleven tour operators are sustainable tourism frontrunners in the Netherlands, and are the driving forces behind this project.
In Europe we consume 50 million tonnes of plastic a year. The use of plastic has increased fiftyfold in fifty years and the growth continues. Collecting and recycling plastic is thus essential to avoid the pollution of the land and sea. However, generally, post-consumer plastics have very low recycling rates, at present only 7% of plastic used in Europe comes from recycled polymers. Polyethylene terephthalate (PET) is one of the most recycled materials; in 2017 more than 57% of PET bottles were recycled in Europe, used in both packaging and fibre applications. Especially transparent PET bottles have high collecting and recycling rates over Europe. However, the plastics have very different value depending on their colour. If the plastic is even very lightly coloured, the plastic will lose a large percentage of its value. Decolouring plastic is complicated and currently no efficient and economically viable system exists. FT Innovations, a SME with the core-expertise in extraction, sees potential in developing a sustainable decolouration process with a new extraction technology, which offers significant potential in replacing hazardous, relatively expensive and environmentally damaging organic solvents that are currently used on decolouration. Avans has relevant expertise in both (biobased) plastic colourants and the extraction techniques as demonstrated in previous projects, and therefore FT innovations approached Avans with the request to assist in the feasibility study. The consortium is further strengthen by CCT Oss with their strong industrial know-how of colourants and their use in plastics and Plastic Company with their core activity on recycling of PET and other plastic materials.