Western-European consumers have become not only more demanding on product availability in retail outlets but also on other food attributes such as quality, integrity, and safety. When (re)designing food supply-chain networks, from a logistics point of view, one has to consider these demands next to traditional efficiency and responsiveness requirements. The concept ‘quality controlled logistics’ (QCL) hypothesizes that if product quality in each step of the supply chain can be predicted in advance, goods flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, constant quality, and less product losses. The paper discusses opportunities of using real-time product quality information for improvement of the design and management of ‘AgriFood Supply Chain Networks’, and presents a preliminary diagnostic instrument for assessment of ‘critical quality’ and ‘logistics control’ points in the supply chain network. Results of a tomato-chain case illustrate the added value of the QCL concept for identifying improvement opportunities in the supply chain as to increase both product availability and quality. Future research aims for the further development of the diagnostic instrument and the quantification of costs and benefits of QCL scenarios.
Banana is an important commercial fruit crop for smallholder farmers in Arba Minch, southern Ethiopia. However, its sector is experiencing many constraints and limited attention given to productivity and marketing. Therefore, this study was conducted to analyze the banana value chain in order to identify constraints on productivity and marketing, and possibilities of improvements towards a sustainable value chain in Arba Minch. Data were collected through a survey, key informants’ interviews, and focus group discussions. Different analytical and statistical tools were used for data analysis. Results describe actors, supporters, and influencers of the existing banana chain. The current banana chain has three different distribution channels in Arba Minch. The channel that connects with rural consumers has the highest value share for farmers while the channel that includes traveling traders has the lowest value share for farmers. The marketing cooperative channel has an intermediate value share for farmers in the chain. Poor agronomic practice, diseases, pests, and climate change were the major constraints for the banana yield while limited market information, lack of cold store and refrigerated trucks, poor post-harvest handling, lack of alternative markets, and weak capacity of cooperatives were the main constraints for banana marketing in Arba Minch. Economic, social and environmental indicators have a moderate sustainability performance within the Ethiopian context. The chain has an advantage in terms of profitability, employment, emission of air pollutants and constraints in terms of coordination, value share, profit margin, market diversity, product and market information, transportation, waste management, and safety and hygiene.
MULTIFILE
Background and aim ʹ Many countries signed the Paris Agreement to mitigate global average temperature rise. In this context, Dutch government decided to realize a reduction of 50% using resources and raw materials in 2030. This paper explores how practice-based research into facility operations can contribute to this aim. Methods / Methodology ʹ Practice-based research which includes direct observations, desk research, and participatory action research. Results ʹ This explorative research presents principles and suggestions for facility managers and procurement managers on how they can embed sustainable materials management in the organisation and how to take control of waste. The proposed suggestions are derived from practice-based research and presented as topics of attention for facility professionals. Originality ʹ Within education of Dutch universities of applied sciences and daily professional facility practices, the phenomenon of materials management is underexposed. To contribute to the national and international climate objectives, (future) facility professionals need better support to reduce waste. Bachelor students were involved throughout this research. This approach gave refreshing insights into waste at the end of the supply chain (control separation units) that can improve informed decisionmaking at the beginning of the supply chain. Practical or social implications ʹ Facility management professionals have an important role to play in the mitigation of global average temperature rise, because of their leading role in procurement, service operations, and materials management. However, they struggle to find sustainable solutions. This paper seeks to inspire professionals with interventions that have proven effectiveness on the reduction of waste. Type of paper ʹ Short research paper.
In een circulaire economie worden producten en grondstoffen hergebruikt. Er is geen sprake van afval maar van grondstoffen. Bedrijven die circulair ondernemen kiezen bewust voor hernieuwbare hulpbronnen of zorgen dat de materialen optimaal kunnen worden hergebruikt of hoogwaardig gerecycled. Een circulair bedrijfsmodel vraagt veelal om een andere financieringsconstructie. Zo hebben producten die worden hergebruikt of op hoogwaardige wijze worden gerecycled altijd een financiële restwaarde. Deze dient inzichtelijk te zijn en afgestemd te worden met de verschillende ketenpartners en met financiers. De financieringsbehoefte van een onderneming verandert ook als een bedrijf ervoor kiest om producten niet te verkopen, maar via een overeenkomst beschikbaar te stellen aan gebruikers. Mkb-bedrijven die circulair willen gaan ondernemen, geven aan problemen te ondervinden bij het vinden van passende financiering voor hun circulaire bedrijfsmodel. Zij hebben behoefte aan nieuwe kennis over hoe zij hun financiering moeten organiseren om niet alleen circulair maar ook winstgevend te ondernemen. Uit gesprekken en workshops met bedrijven, zijn de volgende praktijkvragen naar voren gekomen: 1. hoe kunnen we de financiële (rest)waardes van onze producten bepalen en verbinden aan zakelijke afspraken over hergebruik en recycling? 2. hoe kunnen we financiële contracten opstellen met ketenpartners waardoor gebruikers worden gefaciliteerd en gestimuleerd om producten opnieuw te gebruiken en te recyclen? 3. hoe kunnen we financiering aantrekken en wat betekent dit voor onze onderneming en samenwerking binnen de logistieke keten? Onder leiding van het Windesheim lectoraat Supply Chain Management wordt in dit project in een consortium met Stenden, University of Aruba, Sustainable Finance Lab (verbonden aan Universiteit Utrecht), Ilab Green PAC, Bureau Innovatie, MKB-ondernemingen en financiers onderzoek gedaan naar financieringsmogelijkheden binnen de circulaire logistieke keten. De resultaten van dit casestudieonderzoek worden breed gedeeld met bedrijven en onderwijs via masterclasses en lesprogramma's.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.