There is growing realisation amongst local communities that the organizations and societies within which they live and work need to become more sustainable in order to secure their social, environmental and economic futures (Coyle 2011, Müller et al. 2011). The underlying motivations vary but are often traceable to an increased need for certainty or security. The search for solutions is in part practically orientated towards resilience to different forces of decline. Whilst sometimes manifested in individuals it is more often evident within local initiatives seeking common ground and related to perceived needs for local independence or increased self-determination (Musall & Kuik 2011, Seyfang & Haxeltine 2012). In our project and in this paper, our focus is on local initiatives as opposed to developments at regional or strategic scales. In the Northern Netherlands such local initiatives are often comprised of village residents or more heterogeneous groups from the wider rural community, with local initiatives co-existent in urban areas and cities. Local initiatives may focus on different sustainability issues (or a combination of them), such as transportation, energy, water, natural environment, food production, solid waste or the local economy (Coyle, 2011). However, many of these local initiatives focus on energy issues and solutions, while they might expand their interests to other issues after a prolonged existence. Therefore, in this paper we refer to these local or communal activities as Local Energy Initiatives (LEI’s) that are at the grassroots of sustainable transitions.
Uit het rapport: "In mei 2015 bestaat het Centre of Expertise Smart Sustainable Cities 1 jaar. De founding partners, Ballast Nedam, BJW, Hogeschool Utrecht, Movares, ROC Midden-Nederland, Royal HaskoningDHV, Uneto VNI en Utrecht Sustainability Institute, hebben in het afgelopen jaar hard gewerkt aan de organisatie en projecten. Medewerkers van bedrijven, studenten, docenten en onderzoekers werken samen in multidisciplinaire teams om met nieuwe kennis en inzichten concrete toepassingen te ontwikkelen. Dat is de kern van onze manier van werken. Vanuit een systeemperspectief verbinden we technologische oplossingen aan de vraagstukken van mens en maatschappij. Op de conferentie ‘Samen werken aan Smart Sustainable Cities: het Utrechtse model’ (hu-conferenties.nl) op 5 juni, laten we u graag zien hoe we dat in praktijk brengen. In deze uitgave vindt u een kleine greep uit de projecten van het Centre waarin u ziet wat de meerwaarde is van de verbinding beroepspraktijkonderzoek- onderwijs. Kijkt u voor alle projecten van het Centre of Expertise op onze website: www.smartsustainablecities.hu.nl/projecten. Nadia Verdeyen, Algemeen directeur Centre of Expertise Smart Sustainable Cities"
Authorities aim at making the urban freight system more sustainable. The most common instruments to do so are regulation or stimulation of good practices, by offering subsidies or initiating projects together with the private parties that are responsible for actually performing urban freight transport operations. This contribution examines the possibilities for (local) authorities to use their market role, i.e. being a big procurer of goods and services in a city that result in many urban freight transport trips, to stimulate more sustainable urban freight transportation. Procurement is usually not linked to transport and data from procured goods and services do not provide sufficient insights to estimates the impacts of deliveries and trips related to the procured goods and services. This contribution discusses two cases in which (local) authorities try to make the urban freight transport that results from their procurement activities visible, via different methods, such as delivery service plans, and spend analyses. The cases of Rotterdam (in the project BuyZET) and for the logistics hub in The Hague show the first results of how (local) authorities can act to improve urban freight transport once the trips caused by procured goods and services are clearly mapped. © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
LINK
The production, use, disposal and recovery of packaging not only generates massive volumes of waste, it also consumes raw materials, water and energy (Fitzpatrick et al. 2012). Simultaneously, consumers have shown an increasing interest in products incorporating sustainable and social attributes (Kletzan et al., 2006). As a result, environmentally friendly packaging, also called ecofriendly or sustainable packaging, has become mainstream. In this context, packaging is more than just ensuring the product's protection and easing transportation, it is also a communicative tool (Palmer, 2000) and it becomes associated with multiple drivers of the purchasing process. Consequently, companies face pressure to innovate responding to consumer demands, and focusing on sustainable solutions that reduce harmful materials and favour green alternatives for both, the product and the packaging. Although the above has triggered research on consumer choice for sustainable products and alternatives on sustainable packaging, the relation between sustainable packaging and consumer behaviour remains underexplored. This research unpacks this relationship, i.e., empirically verifies which dimensions (recyclability, biodegradability, reusability) of sustainable packaging are perceived and valued by consumers. Put differently, this research investigates consumer behaviour towards the functions of sustainable packaging in terms of product protection, convenience, reliability of information and promotion, and scrutinises the perceived credibility of the associated ethical responsibility claims. It aims to identify those packaging materials and/or sustainability characteristics perceived as more sustainable by consumers as well as the factors influencing actual consumer choice towards sustainable packaged products. We aim to gain more insights in the perceptual frame that different types of consumers apply when exposed to sustainable packaging. To this end, we will make use of revealed preference methods to measure consumer valuations of sustainable packaged products. This game-theoretic approach should provide a more complete depiction of consumers' perceptions and preferences.
Since March 2013, Paul Peeters is a member of the ICAO/CAEP Working Group 3, which is responsible for setting a new fuel efficiency standard for of civil aviation. He does so for the International Coalition for Sustainable Aviation (ICSA). ICSA was established in 1998 by a group of national and international environmental NGOs as official observers. Since its inception, ICSA has contributed to CAEP’s work on technical means to reduce emissions and noise, the role of market-based measures, supporting economic and environmental analysis, modelling and forecasting, and ICAO’s carbon calculator. It has also been invited to present its views at ICAO workshops on carbon markets and bio-fuels, and has presented to the high-level Group on Internation Aviation and Climate Change (GIACC). ICSA uses the expertise within its NGO membership to formulate its co-ordinated positions. To gain the broadest level of understanding and input from environmental NGOs, ICSA communicates with, and invites comment from, other NGO networks and bodies working in related areas. ICSA’s participation in ICAO and CAEP meetings is currently provided by the Aviation Environment Federation (AEF), the International Council for Clean Transportation (ICCT) and Transport and Environment (T&E). See http://www.icsa-aviation.org
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”