Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound heavy metals, which are known to often accumulate in the topsoil. In this study, a portable XRF instrument is used to provide in situ spatial characterization of soil pollutants. The method uses portable XRF measurements of heavy metals along profiles with set intervals (1 meter) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.
MULTIFILE
Stormwater runoff has severe negative and direct impact on the quality of surface waters and groundwater. The impact can cause chemical and heavy-metal pollution. Applying well established methods to map pollutants in urban areas and specifically in Nature-Based Solutions (NBS), such as Sustainable UrbanDrainage Systems (SuDS) is a step towards improving the water quality in the urban water cycle. Traditional mapping of pollutants by the means of soil samples is costly, which is the main reason why the environmental-technical functioning of rainwater facilities has not been investigated on a large scale andsystematically. X-ray fluorescence (XRF) is a known analysing method for finding metals and other components, for laboratory analysis and portable instruments. In this work we propose a new approach of mapping method for pollutants in-situ, such as heavy metals in soil in SuDS, with case studies from theNetherlands where swales were implemented 20 years ago. In situ XRF measurements is a quick and costefficient analysis for heavy meatal mapping in the respect to contaminated soil. In situ XRF measures of various elements, including heavy metals is carried out in a quickscan and accurate manner and measures both qualitatively and quantitatively. It makes the time-consuming and costly interim analyses by laboratories superfluous. In this study, we suggest a new methodology approach for in situ mapping of pollutants in various swales that were implemented from 20 to 5 years ago. The results differ due to multiple factors (age, use of materials, storage volume, maintenance, run off quality, etc.). Several locations reached unacceptable levels, above the national thresholds for pollutants. The spatial distribution of pollutants in the over 30 swales mapped in the Netherlands show that the preferred water flow in theSuDS controls the spreading of pollutants. The swales investigated are presented in an interactive way with the open source tool www.climatescan.nl, containing more than 100 swales, part of which has been investigated with in situ XRF measurements. The research results are of great importance for all stakeholders in (inter)national cities that are involved in climate adaptation. SuDS is the most widely used method for storing stormwater and infiltrating in the Netherlands. However, there is still too little knowledge about the long-term functioning of the soil of these facilities.