The methodology of biomimicry design thinking is based on and builds upon the overarching patterns that all life abides by. “Cultivating cooperative relationships” within an ecosystem is one such pattern we as humans can learn from to nurture our own mutualistic and symbiotic relationships. While form and process translations from biology to design have proven accessible by students learning biomimicry, the realm of translating biological functions in a systematic approach has proven to be more difficult. This study examines how higher education students can approach the gap that many companies in transition are struggling with today; that of thinking within the closed loops of their own ecosystem, to do good without damaging the system itself. Design students should be able to assess and advise on product design choices within such systems after graduation. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter, and many obstacles are encountered by students and their professional clients when trying to implement systems thinking into their design process. While biomimicry offers guidelines and methodology, there is insufficient research on complex, systems-level problem solving that systems thinking biomimicry requires. This study looks at factors found in course exercises, through student surveys and interviews that helped (novice) professionals initiate systems thinking methods as part of their strategy. The steps found in this research show characteristics from student responses and matching educational steps which enabled them to develop their own approach to challenges in a systems thinking manner. Experiences from the 2022 cohort of the semester “Design with Nature” within the Industrial Design Engineering program at The Hague University of Applied Sciences in the Netherlands have shown that the mixing and matching of connected biological design strategies to understand integrating functions and relationships within a human system is a promising first step. Stevens LL, Whitehead C, Singhal A. Cultivating Cooperative Relationships: Identifying Learning Gaps When Teaching Students Systems Thinking Biomimicry. Biomimetics. 2022; 7(4):184. https://doi.org/10.3390/biomimetics7040184
DOCUMENT
Societal actors across scales and geographies increasingly demand visual applications of systems thinking – the process of understanding and changing the reality of a system by considering its whole set of interdependencies – to address complex problems affecting food and agriculture. Yet, despite the wide offer of systems mapping tools, there is still little guidance for managers, policy-makers, civil society and changemakers in food and agriculture on how to choose, combine and use these tools on the basis of a sufficiently deep understanding of socio-ecological systems. Unfortunately, actors seeking to address complex problems with inadequate understandings of systems often have limited influence on the socio-ecological systems they inhabit, and sometimes even generate unintended negative consequences. Hence, we first review, discuss and exemplify seven key features of systems that should be – but rarely have been – incorporated in strategic decisions in the agri-food sector: interdependency, level-multiplicity, dynamism, path dependency, self-organization, non-linearity and complex causality. Second, on the basis of these features, we propose a collective process to systems mapping that grounds on the notion that the configuration of problems (i.e., how multiple issues entangle with each other) and the configuration of actors (i.e., how multiple actors relate to each other and share resources) represent two sides of the same coin. Third, we provide implications for societal actors - including decision-makers, trainers and facilitators - using systems mapping to trigger or accelerate systems change in five purposive ways: targeting multiple goals; generating ripple effects; mitigating unintended consequences; tackling systemic constraints, and collaborating with unconventional partners.
MULTIFILE
Modern safety thinking and models focus more on systemic factors rather than simple cause-effect attributions of unfavourable events on the behaviour of individual system actors. This study concludes previous research during which we had traced practices of new safety thinking practices (NSTPs) in aviation investigation reports by using an analysis framework that includes nine relevant approaches and three safety model types mentioned in the literature. In this paper, we present the application of the framework to 277 aviation reports which were published between 1999 and 2016 and were randomly selected from the online repositories of five aviation authorities. The results suggested that all NSTPs were traceable across the sample, thus followed by investigators, but at different extents. We also observed a very low degree of using systemic accident models. Statistical tests revealed differences amongst the five investigation authorities in half of the analysis framework items and no significant variation of frequencies over time apart from the Safety-II aspect. Although the findings of this study cannot be generalised due to the non-representative sample used, it can be assumed that the so-called new safety thinking has been already attempted since decades and that recent efforts to communicate and foster the corresponding aspects through research and educational means have not yet yielded the expected impact. The framework used in this study can be applied to any industry sector by using larger samples as a means to investigate attitudes of investigators towards safety thinking practices and respective reasons regardless of any labelling of the former as “old” and “new”. Although NSTPs are in the direction of enabling fairer and more in-depth analyses, when considering the inevitable constraints of investigations, it is more important to understand the perceived strengths and weaknesses of each approach from the viewpoint of practitioners rather than demonstrating a judgmental approach in favour or not of any investigation practice.
DOCUMENT
Design, Design Thinking, and Co-design have gained global recognition as powerful approaches for innovation and transformation. These methodologies foster stakeholder engagement, empathy, and collective sense-making, and are increasingly applied to tackle complex societal and institutional challenges. However, despite their collaborative potential, many initiatives encounter resistance, participation fatigue, or only result in superficial change. A key reason lies in the overlooked undercurrent—the hidden systemic dynamics that shape transitions. This one-year exploratory research project, initiated by the Expertise Network Systemic Co-design (ESC), aims to make systemic work accessible to creative professionals and companies working in social and transition design. It focuses on the development of a Toolkit for Systemic Work, enabling professionals to recognize underlying patterns, power structures, and behavioral dynamics that can block or accelerate innovation. The research builds on the shared learning agenda of the ESC network, which brings together universities of applied sciences, design practitioners, and organizations such as the Design Thinkers Group, Mindpact, and Vonken van Vernieuwing. By integrating systemic insights—drawing from fields like systemic therapy, constellation work, and behavioral sciences—into co-design practices, the project strengthens the capacity to not only design solutions but also navigate the forces that shape sustainable change. The central research question is: How can we make systemic work accessible to creative professionals, to support its application in social and transition design? Through the development and testing of practical tools and methods, this project bridges the gap between academic insights and the concrete needs of practitioners. It contributes to the professionalization of design for social innovation by embedding systemic awareness and collective learning into design processes, offering a foundation for deeper impact in societal transitions.
My research investigates the concept of permacomputing, a blend of the words permaculture and computing, as a potential field of convergence of technology, arts, environmental research and activism, and as a subject of future school curricula in art and design. This concept originated in online subcultures, and is currently restricted to creative coding communities. I study in what way permacomputing principles may be used to redefine how art and design education is taught. More generally, I want to research the potential of permacomputing as a critical, sustainable, and practical alternative to the way digital technology is being taught in art education, where students mostly rely on tools and techniques geared towards maximising productivity and mass consumption. This situation is at odds with goals for sustainable production and consumption. I want to research to what degree the concept of permacomputing can be broadened and applied to critically revised, sustainable ways of making computing part of art and design education and professional practice. This research will be embedded in the design curriculum of Willem de Kooning Academy, focused on redefining the role of artists and designers to contribute to future modes of sustainable organisation and production. It is aligned with Rotterdam University of Applied Sciences sectorplan masters VH, in particular managing and directing sustainable transitions. This research builds upon twenty years of experience in the creative industries. It is an attempt to generalise, consolidate, and structure methods and practices for sustainable art and design production experimented with while I was course director of a master programme at WdKA. Throughout the research I will be exchanging with peers and confirmed interested parties, a.o.: Het Nieuwe Instituut (NL), RUAS Creating 010 kenniscentrum (NL), Bergen Centre for Electronic Arts (NO), Mikrolabs (NO), Varia (NL), Media Arts department at RHU (UK), Media Studies at UvA (NL).