In discussions on smart grids, it is often stated that residential end-users will play a more active role in the management of the electric power system. Experience in practice on how to empower end-users for such a role is however limited. This paper presents a field study in the first phase of the PowerMatching City project in which twenty-two households were equipped with demand-response-enabled heating systems and white goods. Although end-users were satisfied with the degree of living comfort afforded by the smart energy system, the user interface did not provide sufficient control and energy feedback to support an active contribution to the balancing of supply and demand. The full potential of demand response was thus not realized. The second phase of the project builds on these findings by design, implementation and evaluation of an improved user interface in combination with two demand response propositions. © 2013 IEEE.
Additions to the book "Systems Design and Engineering" by Bonnema et.al. Subjects were chosen based on the Systems Engineering needs for Small and Medium Enterprises, as researched in the SESAME project. The
MULTIFILE
Behaviour Change Support Systems (BCSS), already running for the 10th time at Persuasive Technology, is a workshop that builds around the concept of systems that are specifically designed to help and support behaviour change in individuals or groups. The highly multi-disciplinary nature of designing and implementing behaviour change strategies and systems for the strategies has been in the forefront of this workshop from the very beginning. The persuasive technology field is becoming a linking pin connecting natural and social sciences, requiring a holistic view on persuasive technologies, as well as multi-disciplinary approach for design, implementation, and evaluation. So far, the capacities of technologies to change behaviours and to continuously monitor the progress and effects of interventions are not being used to its full potential. The use of technologies as persuaders may shed a new light on the interaction process of persuasion, influencing attitudes and behaviours. Yet, although human- computer interaction is social in nature and people often do see computers as social actors, it is still unknown how these interactions re-shape attitude, beliefs, and emotions, or how they change behaviour, and what the drawbacks are for persuasion via technologies. Humans re-shape technology, changing their goals during usage. This means that persuasion is not a static ad hoc event but an ongoing process. Technology has the capacity to create smart (virtual) persuasive environments that provide simultaneously multimodal cues and psycho-physiological feedback for personal change by strengthening emotional, social, and physical presence. An array of persuasive applications has been developed over the past decade with an aim to induce desirable behaviour change. Persuasive applications have shown promising results in motivating and supporting people to change or adopt new behaviours and attitudes in various domains such as health and wellbeing, sustainable energy, education, and marketing. This workshop aims at connecting multidisciplinary researchers, practitioners and experts from a variety of scientific domains, such as information sciences, human-computer interaction, industrial design, psychology and medicine. This interactive workshop will act as a forum where experts from multiple disciplines can present their work, and can discuss and debate the pillars for persuasive technology.
MULTIFILE
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.