Current methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not consistent with process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to very limited application of energy performance diagnosis in practice. In a previous paper, a generic reference architecture – hereafter referred to as the 4S3F (four symptoms and three faults) framework – was developed. Because it is closely related to the way HVAC experts diagnose problems in HVAC installations, 4S3F largely overcomes the problem of limited application. The present article addresses the fault diagnosis process using automated fault identification (AFI) based on symptoms detected with a diagnostic Bayesian network (DBN). It demonstrates that possible faults can be extracted from P&IDs at different levels and that P&IDs form the basis for setting up effective DBNs. The process was applied to real sensor data for a whole year. In a case study for a thermal energy plant, control faults were successfully isolated using balance, energy performance and operational state symptoms. Correction of the isolated faults led to annual primary energy savings of 25%. An analysis showed that the values of set probabilities in the DBN model are not outcome-sensitive. Link to the formal publication via its DOI https://doi.org/10.1016/j.enbuild.2020.110289
Despite the promises of learning analytics and the existence of several learning analytics implementation frameworks, the large-scale adoption of learning analytics within higher educational institutions remains low. Extant frameworks either focus on a specific element of learning analytics implementation, for example, policy or privacy, or lack operationalization of the organizational capabilities necessary for successful deployment. Therefore, this literature review addresses the research question “What capabilities for the successful adoption of learning analytics can be identified in existing literature on big data analytics, business analytics, and learning analytics?” Our research is grounded in resource-based view theory and we extend the scope beyond the field of learning analytics and include capability frameworks for the more mature research fields of big data analytics and business analytics. This paper’s contribution is twofold: 1) it provides a literature review on known capabilities for big data analytics, business analytics, and learning analytics and 2) it introduces a capability model to support the implementation and uptake of learning analytics. During our study, we identified and analyzed 15 key studies. By synthesizing the results, we found 34 organizational capabilities important to the adoption of analytical activities within an institution and provide 461 ways to operationalize these capabilities. Five categories of capabilities can be distinguished – Data, Management, People, Technology, and Privacy & Ethics. Capabilities presently absent from existing learning analytics frameworks concern sourcing and integration, market, knowledge, training, automation, and connectivity. Based on the results of the review, we present the Learning Analytics Capability Model: a model that provides senior management and policymakers with concrete operationalizations to build the necessary capabilities for successful learning analytics adoption.
MULTIFILE
Much of the discussion about Wikipedia, both in the news and in more scholarly circles, still largely reflects the concerns found in populist perspectives. What’s missing is an informed, radical critique from the inside. The Critical Point of View (CPOV) research initiative, whose material is brought together in this reader, poses different questions than those we have thus far encountered.
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.
-Chatbots are being used at an increasing rate, for instance, for simple Q&A conversations, flight reservations, online shopping and news aggregation. However, users expect to be served as effective and reliable as they were with human-based systems and are unforgiving once the system fails to understand them, engage them or show them human empathy. This problem is more prominent when the technology is used in domains such as health care, where empathy and the ability to give emotional support are most essential during interaction with the person. Empathy, however, is a unique human skill, and conversational agents such as chatbots cannot yet express empathy in nuanced ways to account for its complex nature and quality. This project focuses on designing emotionally supportive conversational agents within the mental health domain. We take a user-centered co-creation approach to focus on the mental health problems of sexual assault victims. This group is chosen specifically, because of the high rate of the sexual assault incidents and its lifetime destructive effects on the victim and the fact that although early intervention and treatment is necessary to prevent future mental health problems, these incidents largely go unreported due to the stigma attached to sexual assault. On the other hand, research shows that people feel more comfortable talking to chatbots about intimate topics since they feel no fear of judgment. We think an emotionally supportive and empathic chatbot specifically designed to encourage self-disclosure among sexual assault victims could help those who remain silent in fear of negative evaluation and empower them to process their experience better and take the necessary steps towards treatment early on.