Background: A large number of people participate in individual or unorganized sports on a recreational level. Furthermore, many participants drop out because of injury or lowered motivation. Potentially, physical activity–related apps could motivate people during sport participation and help them to follow and maintain a healthy active lifestyle. It remains unclear what the quality of running, cycling, and walking apps is and how it can be assessed. Quality of these apps was defined as having a positive influence on participation in recreational sports. This information will show which features need to be assessed when rating physical activity–related app quality. Objective: The aim of this study was to identify expert perception on which features are important for the effectiveness of physical activity–related apps for participation in individual, recreational sports. Methods: Data were gathered via an expert panel approach using the nominal group technique. Two expert panels were organized to identify and rank app features relevant for sport participation. Experts were researchers or professionals in the field of industrial design and information technology (technology expert panel) and in the field of behavior change, health, and human movement sciences who had affinity with physical activity–related apps (health science expert panel). Of the 24 experts who were approached, 11 (46%) agreed to participate. Each panel session consisted of three consultation rounds. The 10 most important features per expert were collected. We calculated the frequency of the top 10 features and the mean importance score per feature (0-100). The sessions were taped and transcribed verbatim; a thematic analysis was conducted on the qualitative data. Results: In the technology expert panel, applied feedback and feedforward (91.3) and fun (91.3) were found most important (scale 0-100). Together with flexibility and look and feel, these features were mentioned most often (all n=4 [number of experts]; importance scores=41.3 and 43.8, respectively). The experts in the health science expert panels a and b found instructional feedback (95.0), motivating or challenging (95.0), peer rating and use (92.0), motivating feedback (91.3), and monitoring or statistics (91.0) most important. Most often ranked features were monitoring or statistics, motivating feedback, works good technically, tailoring starting point, fun, usability anticipating or context awareness, and privacy (all n=3-4 [number of experts]; importance scores=16.7-95.0). The qualitative analysis resulted in four overarching themes: (1) combination behavior change, technical, and design features needed; (2) extended feedback and tailoring is advised; (3) theoretical or evidence base as standard; and (4) entry requirements related to app use. Conclusions: The results show that a variety of features, including design, technical, and behavior change, are considered important for the effectiveness of physical activity–related apps by experts from different fields of expertise. These insights may assist in the development of an improved app rating scale.
LINK
Tijdens de expertmeeting Bewegingsstimulering door apps en online programma’s georganiseerd door het Kenniscentrum Sport heeft Joan Dallinga een presentatie gehouden over de huidige stand van zaken over app onderzoek en uitdagingen waar we voor staan.
BACKGROUND: For older adults, physical activity is vital for maintaining their health and ability to live independently. Home-based programs can help them achieve the recommended exercise frequency. An application for a tablet computer was developed to support older adults in following a personal training program. It featured goal setting, tailoring, progress tracking, and remote feedback.OBJECTIVE: In line with the Medical Research Council Framework, which prescribes thorough testing before evaluating the efficacy with a randomized controlled trial, the aim of this study was to assess the usability of a tablet-based app that was designed to support older adults in doing exercises at home.METHODS: A total of 15 older adults, age ranging from 69 to 99 years old, participated in a usability study that utilized a mixed-methods approach. In a laboratory setting, novice users were asked to complete a series of tasks while verbalizing their ongoing thoughts. The tasks ranged from looking up information about exercises and executing them to tailoring a weekly exercise schedule. Performance errors and time-on-task were calculated as proxies of effective and efficient usage. Overall satisfaction was assessed with a posttest interview. All responses were analyzed independently by 2 researchers.RESULTS: The participants spent 13-85 seconds time-on-task. Moreover, 79% (11/14)-100% (14/14) participants completed the basic tasks with either no help or after having received 1 hint. For expert tasks, they needed a few more hints. During the posttest interview, the participants made 3 times more positive remarks about the app than negative remarks.CONCLUSIONS: The app that was developed to support older adults in doing exercises at home is usable by the target audience. First-time users were able to perform basic tasks in an effective and efficient manner. In general, they were satisfied with the app. Tasks that were associated with behavior execution and evaluation were performed with ease. Complex tasks such as tailoring a personal training schedule needed more effort. Learning effects, usefulness, and long-term satisfaction will be investigated through longitudinal follow-up studies.
Sustainable energy production relies on smart design of functional nanomaterials with controllable sizes and structures. Core-shell nanoparticles are highly functional materials with properties arising from the core or shell materials or a combination of both. Changing the electronic properties of the shell by tailored design or induced by the underlying core lead to enhanced catalytic performances, especially in electrocatalysis. Tailoring the structure and functions of core and shell materials simultaneously often involves complex chemical methods. In this KIEM GoChem project, University of Amsterdam will work together with VSParticle, Spark904 and Inholland University of Applied Sciences to develop a novel and environmentally friendly method for the gas-phase synthesis of core-shell nanoparticles. A physical process will be used to control the growth and the mean size of the core whilst the structure and thickness of the shell will be tuned via selective adsorption and thermal processes. Core-shell nanoparticles produced by the proposed method can be directly incorporated into the next process step, e.g. at electrode surface or in (conductive) composites.