Manual crack inspection is labor-intensive and impractical at scale, prompting a shift toward AI-based segmentation methods. We present a novel crack segmentation model that leverages the Segment Anything Model 2 (SAM 2) through transfer learning to detect cracks on masonry surfaces. Unlike prior approaches that rely on encoders pretrained for image classification, we fine-tune SAM 2, originally trained for segmentation tasks, by freezing its Hiera encoder and FPN neck, while adapting its prompt encoder, LoRA matrices, and mask decoder for the crack segmentation task. No prompt input is used during training to avoid detection overhead. Our aim is to increase robustness to noise and enhance generalizability across different surface types. This work demonstrates the potential of foundational segmentation models in enabling more reliable and field-ready AI-based crack detection tools.
It is unknown how movement patterns that are learned carry over to the field. The objective was to deter- mine whether training during a jump-landing task would transfer to lower extremity kinematics and kinetics during sidestep cutting.Methods Forty healthy athletes were assigned to the ver- bal internal focus (IF, n = 10), verbal external focus (EF, n = 10), video (VI, n = 10) or control (CTRL, n = 10) group. A jump-landing task was performed as baseline followed by training blocks (TR1 and TR2) and a post-test. Group-spe- cific instructions were given in TR1 and TR2. In addition, participants in the IF, EF and VI groups were free to ask for feedback after every jump during TR1 and TR2. Retention was tested after 1 week. Transfer of learned skill was deter- mined by having participants perform a 45° unanticipated sidestep cutting task. 3D hip, knee and ankle kinematics and kinetics were the main outcome measures.Results During sidestep cutting, the VI group showed greater hip flexion ROM compared to the EF and IF groups (p < 0.001). The EF (p < 0.036) and VI (p < 0.004) groups had greater knee flexion ROM compared to the IF group. Conclusions Improved jump-landing technique car- ried over to sidestep cutting when stimulating an external attentional focus combined with self-controlled feedback. Transfer to more sport-specific skills may demonstrate potential to reduce injuries on the field. Clinicians and practitioners are encouraged to apply instructions that stimulate an external focus of attention, of which visual instructions seem to be very powerful.
This paper is a report of a review conducted to provide an overview of the evidence in the literature on task-oriented training of stroke survivors and its relevance in daily nursing practice. Background: Stroke is the second leading cause of death and one of the leading causes of adult disability in the Western world. The use of neurodevelopmental treatment in the daily nursing care of stroke survivors does not improve clinical outcomes. Nurses are therefore exploring other forms of rehabilitation intervention, including task-oriented rehabilitation. Despite the growing number of studies showing evidence on task-oriented interventions, recommendations for daily nursing practice are lacking. A range of databases was searched to identify papers addressing taskoriented training in stroke rehabilitation, including Medline, CINAHL, Embase and the Cochrane Library of systematic reviews. Papers published in English between January 1996 and September 2007 were included. There were 42 papers in the final dataset, including nine systematic reviews. Review methods: The selected randomized controlled trials and systematic reviews were assessed for quality. Important characteristics and outcomes were extracted and summarized. Results: Studies of task-related training showed benefits for functional outcome compared with traditional therapies. Active use of task-oriented training with stroke survivors will lead to improvements in functional outcomes and overall healthrelated quality of life. Conclusion. Generally, task-oriented rehabilitation proved to be more effective. Many interventions are feasible for nurses and can be performed in a ward or at home. Nurses can and should play an important role in creating opportunities to practise meaningful functional tasks outside of regular therapy sessions.
Teachers have a crucial role in bringing about the extensive social changes that are needed in the building of a sustainable future. In the EduSTA project, we focus on sustainability competences of teachers. We strengthen the European dimension of teacher education via Digital Open Badges as means of performing, acknowledging, documenting, and transferring the competencies as micro-credentials. EduSTA starts by mapping the contextual possibilities and restrictions for transformative learning on sustainability and by operationalising skills. The development of competence-based learning modules and open digital badge-driven pathways will proceed hand in hand and will be realised as learning modules in the partnering Higher Education Institutes and badge applications open for all teachers in Europe.Societal Issue: Teachers’ capabilities to act as active facilitators of change in the ecological transition and to educate citizens and workforce to meet the future challenges is key to a profound transformation in the green transition.Teachers’ sustainability competences have been researched widely, but a gap remains between research and the teachers’ practise. There is a need to operationalise sustainability competences: to describe direct links with everyday tasks, such as curriculum development, pedagogical design, and assessment. This need calls for an urgent operationalisation of educators’ sustainability competences – to support the goals with sustainability actions and to transfer this understanding to their students.Benefit to society: EduSTA builds a community, “Academy of Educators for Sustainable Future”, and creates open digital badge-driven learning pathways for teachers’ sustainability competences supported by multimodal learning modules. The aim is to achieve close cooperation with training schools to actively engage in-service teachers.Our consortium is a catalyst for leading and empowering profound change in the present and for the future to educate teachers ready to meet the challenges and act as active change agents for sustainable future. Emphasizing teachers’ essential role as a part of the green transition also adds to the attractiveness of teachers’ work.
DOK4CT (in Dutch: Digitale Onderwijsmiddelen en Kennisontsluiting for Control Towers)In this project the practical applied knowledge, derived from innovative projects within the “Topsector logistiek”, is made accessible by Breda University and Deltago. This online Control Tower Course is specifically meant for logistic professionals and students in logistic orientated education. The project was made accesible and supported by the NWO, Netherlands Organisation for Scientific Research. The scope of this project is limited to the area of Cross Chain Control Centers (4C) / Control Towers. The educational valorisation will be executed by the development of digital materials. These are used for student education as well as dissemination towards professionals in the logistics sector. Hereby, the interaction between students and professionals is an important additional benefit under the name of “social learning”. For example the interviews that Marcel Wouterse (Deltago and lecturer at Breda University of Applied Sciences) has created with key partners in the logistics sector were recorded and edited by students. By the use of digital educational tools and serious games, the benefits of Control Towers are now visible for students and professionals. The next phase is to introduce the gained knowledge in future organisations in order to support the Netherlands in the top of the logistics sector.Project goalThe goal of this project is to improve the exploitation of fundamental- and applied knowledge in the expertise area of Cross Chain Control Centers (4C) and Control Towers (CT).The tasks are divided in five subprojects:1. Preparations to transfer existing materials in digital learning tools;2. Shape digital education material (Webinars, online platform, knowledge clips and e-learnings)3. Develop and/or use several serious games (Convoy game / Synchromania)4. Promotion of the course to specified target groups (professionals / international students)5. Project managementExcising knowledge regarding Cross Chain Control Centers and Control Towers is used in this project. New knowledge will not be generated. The project focus lies on the disclosure of acquired knowledge by digital learning tools.
Background:Many business intelligence surveys demonstrate that Digital Realities (Virtual reality and Augmented Reality) are becoming a huge market trend in many sectors, and North America is taking the lead in this emerging domain. Tourism is no exception and the sector in Europe must innovate to get ahead of the curve of this technological revolution, but this innovation needs public support.Project partnership:In order to provide labs, startups and SMEs willing to take this unique opportunity with the most appropriate support policies, 9 partner organizations from 8 countries (FR, IT, HU, UK, NO, ES, PL, NL) decided to work together: regional and local authorities, development agencies, private non-profit association and universities.Objective of the project:Thanks to their complementary experiences and know-how, they intend to improve policies of the partner regions (structural funds and regional policies), in order to foster a tourist channeled innovation in the Digital Realities sector.Approach:All partners will work together on policy analysis tasks before exchanging their best initiatives and transferring them from one country to another. This strong cooperation will allow them to build the best conditions to foster innovation thanks to more effective structural funds policies and regional policies.Main activities & outputs:8 policy instruments are addressed, among which 7 relate to structural funds programmes. Basis for exchange of experience: Reciprocal improvement analysis and 8 study trips with peer-review of each partner’s practices. Video reportages for an effective dissemination towards other territories in Europe.Main expected results:At least 16 good practices identified. 8 targeted policy instruments improved. At least 27 staff members will transfer new capacities in their intervention fields. At least 8 involved stakeholders with increased skills and knowledge from exchange of experience. Expected 17 appearances in press and media, including at European level.