Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
MULTIFILE
Bitterness has been suggested to be the main reason for the limited palatability of several vegetables. Vegetable acceptance has been associated with preparation method. However, the taste intensity of a variety of vegetables prepared by differentmethods has not been studied yet. The objective of this study is to assess the intensity of the five basic tastes and fattiness of ten vegetables commonly consumed in the Netherlands prepared by different methods using the modified Spectrum method. Intensities of sweetness, sourness, bitterness, umami, saltiness and fattiness were assessed for ten vegetables (cauliflower, broccoli, leek, carrot, onion, red bell pepper, French beans, tomato, cucumber and iceberg lettuce) by a panel (n = 9) trained in a modified Spectrum method. Each vegetable was assessed prepared by different methods (raw, cooked, mashed and as a cold pressed juice). Spectrum based reference solutions were available with fixed reference points at 13.3 mm (R1), 33.3mm(R2) and 66.7mm(R3) for each tastemodality on a 100mmline scale. For saltiness, R1 and R3 differed (16.7 mm and 56.7 mm). Mean intensities of all taste modalities and fattiness for all vegetables were mostly below R1 (13.3 mm). Significant differences (p b 0.05) within vegetables between preparation methods were found. Sweetness was the most intensive taste, followed by sourness, bitterness, fattiness, umami and saltiness.In conclusion, all ten vegetables prepared by different methods showed low mean intensities of all taste modalities and fattiness. Preparation method affected taste and fattiness intensity and the effect differed by vegetable type.
DOCUMENT
Vegetables have low taste intensities, which might contribute to low acceptance. The aim of this study was to investigate the effect of taste (sweetness, sourness, bitterness, umami, and saltiness) and fattiness enhancement on consumer acceptance of cucumber and green capsicum purees. Three concentrations of sugar, citric acid, caffeine, mono-sodium glutamate, NaCl, and sunflower oil were added to pureed cucumber and green capsicum. Subjects (n = 66,35.6 ± 17.7 y) rated taste and fattiness intensity. Different subjects (n = 100, 33.2 ± 16.5 years) evaluated acceptance of all pureed vegetables. Taste intensities of vegetable purees were significantly different (P < 0.05) between the three tastant concentrations except for umami in both vegetable purees, sourness in green capsicum puree, and fattiness in cucumber puree. Only enhancement of sweetness significantly (P < 0.05) increased acceptance of both vegetable purees compared to unmodified purees. In cucumber purees, relatively small amounts of added sucrose (2%) increased acceptance already significantly, whereas in green capsicum acceptance increased significantly only with addition of 5% sucrose. Enhancement of other taste modalities did not significantly increase acceptance of both vegetable purees. Enhancing saltiness and bitterness significantly decreased acceptance of both vegetable purees. We conclude that the effect of taste enhancement on acceptance of vegetable purees differs between tastants and depends on tastant concentration and vegetable type. With the exception of sweetness, taste enhancement of taste modalities such as sourness, bitterness, umami, and saltiness was insufficient to increase acceptance of vegetable purees. We suggest that more complex taste, flavor, or texture modifications are required to enhance acceptance of vegetables.
DOCUMENT
Inside Out is an innovative research project that translates cutting-edge microbiome science into immersive, multisensory experiences aimed at long-term behavioral and mental health transformation. Combining extended reality (XR), speculative gastronomy, and narrative therapy, the project enables participants to explore their inner microbiome landscape through taste, smell, touch, and interactive storytelling. This pioneering methodology connects gut-brain science with emotional and sensory engagement. Participants experience their bodies from the inside out, cultivating a visceral understanding of the symbiotic microbial worlds within us. The project includes AI-generated "drinkable memories," microbiome-inspired food designs, haptic-olfactory VR environments, and robotic interactions that choreograph the body as terrain. Developed in collaboration with designers from Polymorf, producer Studio Biarritz, psychiatrist-researcher Anja Lok, and microbiome scientists from Amsterdam UMC and the Amsterdam Microbiome Expertise Center, Inside Out bridges scientific rigor with artistic expression. The project seeks to: • Increase embodied understanding of the microbiome’s role in health and well-being • Shift public perception from hygiene-based fear to ecological thinking • Inspire behavioral change related to food, gut health, and mental resilience The outcomes are designed to reach a large audience and implementation in science museums, art-science festivals, and educational programs, with a view toward future clinical applications in preventive healthcare and mental well-being. By making the invisible microbiome tangible, Inside Out aims not only to inform, but to transform—redefining how we relate to the ecosystems within us.
De postdoc kandidaat, Tanja Moerdijk, zal op structurele wijze de reeds door haar gemaakte verbinding tussen het lectoraat Marine Biobased Specialties (MBBS) en de opleiding Chemie van HZ University of Applied Sciences verder uitbouwen en bestendigen. Streven is dat het MBBS Bioprospecten onderzoek zichtbaar is in alle studiejaren van de opleiding Chemie en praktijkcasuïstiek structureel ingebracht wordt in het curriculum. De postdoc is daarom betrokken bij alle studiejaren van de opleiding. Zij zal de ontwikkeling van een geïntegreerde onderzoeksleerlijn in het Chemie curriculum coördineren, welke gevoed wordt vanuit het MBBS onderzoeksprogramma waardoor inbedding van onderzoek in de opleiding wordt geborgd. Verdieping, overdracht en deling van kennis met betrekking tot het chemische smaak- en textuurprofiel van zeewier zal uitgevoerd worden door zowel postdoc als studenten door te participeren in het uitvoeren van praktijkgericht onderzoek aan (polymeer)moleculen uit zeewier in samenwerking met de zeewierproducenten. Deze kennis zal uiteindelijk bijdragen aan een duurzame productie en verwerking van zeewier tot eindproducten voor de consument. Omdat het onderwerp breed en maatschappelijke relevant is, creëert het bovendien de mogelijkheid voor andere opleidingen en onderzoeksgroepen om de verbinding eenvoudig te kunnen oppakken. De postdoc gaat de daadwerkelijke verbinding maken tussen onderzoekers, docenten en studenten. De postdoc ontwikkelt tevens projectleiderschapsvaardigheden door het volgen van een training en door lopende projecten binnen het MBBS onderzoek te benutten om samenwerking met (inter)nationale kennisinstellingen en bedrijven uit te bouwen. De postdoc zal begeleid en ondersteund worden in de uitvoering van haar activiteiten door lector en opleidingscoördinator (olc) (onder andere on the job en formele planningsafspraken), Centre of Expertise Biobased Economy (CoE BBE) alsmede het HZ kernteam CoE BBE (uitbouwen netwerk). Het personeelsbeleid en functiereeks onderwijs en onderzoek van de HZ voorzien in de ontwikkelingsmogelijkheid van de postdoc.