While the technical application domain seems to be to most established field for AI applications, the field is at the very beginning to identify and implement responsible and fair AI applications. Technical, non-user facing services indirectly model user behavior as a consequence of which unexpected issues of privacy, fairness and lack of autonomy may emerge. There is a need for design methods that take the potential impact of AI systems into account.
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.
Goal: In 2030 the availability of high quality and fit-for-purpose recycled plastics has been significantly increased by implementation of InReP’s main result: Development of technologies in sorting, mechanical and chemical recycling that make high quality recycled plastics available for the two dominating polymer types; polyolefins (PE/PP) and PET. Results: Our integrated approach in the recycling of plastics will result in systemic (R1) and technological solutions for sorting & washing of plastic waste (R2), mechanical (R3) and chemical recycling (R4, R6) and upcycling (R5, R7) of polyolefins (PE & PP) and polyesters (PET). The obtained knowledge on the production of high quality recycled plastics can easily be transferred to the recycling of other plastic waste streams. Furthermore, our project aims to progress several processes (optimized sorting and washing, mechanical recycling of PP/PE, glycolysis of PET, naphtha from PP/PE and preparation of valuable monomers from PP/PET) to prototype and/or improved performance at existing pilot facilities. Our initiative will boost the attractiveness of recycling, contribute to the circular transition (technical, social, economic), increase the competitiveness of companies involved within the consortium and encourage academic research and education within this field.