For their technological sustainability innovations to become successful, entrepreneurs can strategically shape the technological field in which they are involved. The technological innovation systems (TISs) literature has generated valuable insights into the processes which need to be stimulated for the successful development and implementation of innovative sustainability technologies. To explore the applicability of the TIS framework from the perspective of entrepreneurs, we conducted a case study in the Dutch smart grids sector. We found that the TIS framework generally matches the perspectives of entrepreneurs. For its use by entrepreneurs, we suggest a slight adaptation of this framework. The process ‘Market formation’ needs to be divided into processes that are driven by the government and processes that are driven by entrepreneurs. There should be a greater emphasis on collaborative marketing, on changing user behaviour and preferences and on the development of fair and feasible business models.
LINK
What will determine if power to gas will be an important technology in the energy transition over the next years? One can look at the development of a technology as a process that takes place in a technological innovation system (TIS). The TIS includes all actors and institutions that are involved in the development, diffusion and utilization of a technology. For a technology todevelop successfully the TIS should fulfil several functions. For power to gas technology several pilot projects are realized, studies are carried out and funds are available both for projects as for research. The functions called entrepreneurial activities, knowledge development, knowledge exchange and resource mobilization are all met. The function that faces the most problems iscalled market formation. There is not yet a regulatory framework for power to gas. Investors in power to gas also need to be rewarded for the benefits that they realize such as the avoided capital cost of extra infrastructure, the enabling of maximum utilization of renewable electricity and the increase in renewable content of the gas networks. Policy directed at market formation is therefor recommended.
DOCUMENT
Abstract The emergence of new technologies such as mp3 and music streaming, and the accompanying digital transformation of the music industry, have led to the shift and change of the entire music industry’s value chain. While music is increasingly being consumed through digital channels, the number of empirical studies, particularly in the field of music copyright in the digital music industry, is limited. Every year, rightsholders of musical works, valued 2.5 billion dollars, remain unknown. The objectives of this study are twofold: First to understand and describe the structure and process of the Dutch music copyright system including the most relevant actors within the system and their relations. Second to apply evolutionary economics approach and Values Sensitive Design method within the context of music copyright through positive-empirical perspective. For studies of technological change in existing markets, the evolutionary economics literature provides a coherent and evidence-based foundation. The actors are generally perceived as being different, for example with regard to their access to information, their ability to handle information, their capital and knowledge base (asymmetric information). Also their norms, values and roles can differ. Based on an analysis of documents and held expert interviews, we find that the collection and distribution of the music copyright money is still based on obsolete laws, neoclassical paradigm and legacy IT-system. Finally, we conclude that the rightsholders are heterogenous and have asymmetrical information and negotiating power. The outcomes of this study contribute to create a better understanding of impact of digitization of music copyright industry and empower the stakeholders to proceed from a more informed perspective on redesigning and applying the future music copyright system and pre-digital norms and values amongst actors.
DOCUMENT
Digital innovation in education – as in any other sector – is not only about developing and implementing novel ideas, but also about having these ideas effectively used as well as widely accepted and adopted, so that many students can benefit from innovations improving education. Effectiveness, transferability and scalability cannot be added afterwards; it must be integrated from the start in the design, development and implementation processes, as is proposed in the movement towards evidence-informed practice (EIP). The impact an educational innovation has on the values of various stakeholders is often overlooked. Value Sensitive Design (VSD) is an approach to integrate values in technological design. In this paper we discuss how EIP and VSD may be combined into an integrated approach to digital innovation in education, which we call value-informed innovation. This approach not only considers educational effectiveness, but also incorporates the innovation’s impact on human values, its scalability and transferability to other contexts. We illustrate the integrated approach with an example case of an educational innovation involving digital peer feedback.
DOCUMENT
In December of 2004 the Directorate General for Research and Technological Development (DG RTD) of the European Commission (EC) set up a High-Level Expert Group to propose a series of measures to stimulate the reporting of Intellectual Capital in research intensive Small and Medium-Sized Enterprises (SMEs). The Expert Group has focused on enterprises that either perform Research and Development (R&D), or use the results of R&D to innovate and has also considered the implications for the specialist R&D units of larger enterprises, dedicated Research & Technology Organizations and Universities. In this report the Expert Group presents its findings, leading to six recommendations to stimulate the reporting of Intellectual Capital in SMEs by raising awareness, improving reporting competencies, promoting the use of IC Reporting and facilitating standardization.
DOCUMENT
The promotor was Prof. Erik Jan Hultink and copromotors Dr Ellis van den Hende en Dr R. van der Lugt. The title of this dissertation is Armchair travelling the innovation journey. ‘Armchair travelling’ is an expression for travelling to another place, in the comfort of one’s own place. ‘The innovation journey’ is the metaphor Van de Ven and colleagues (1999) have used for travelling the uncharted river of innovation, the highly unpredictable and uncontrollable process of innovation. This research study began with a brief remark from an innovation project leader who sighed after a long and rough journey: ‘had I known this ahead of time…’. From wondering ‘what could he have known ahead of time?’ the immediate question arose: how do such innovation journeys develop? How do other innovation project leaders lead the innovation journey? And could I find examples of studies about these experiences from an innovation project leader’s perspective that could have helped the sighing innovation project leader to have known at least some of the challenges ahead of time? This dissertation is the result of that quest, as we do know relatively little how this process of the innovation project leader unfolds over time. The aim of this study is to increase our understanding of how innovation project leaders lead their innovation journeys over time, and to capture those experiences that could be a source for others to learn from and to be better prepared. This research project takes a process approach. Such an approach is different from a variance study. Process thinking takes into account how and why things – people, organizations, strategies, environments – change, act and evolve over time, expressed by Andrew Pettigrew (1992, p.10) as catching “reality in flight”.
MULTIFILE
The world is rapidly transforming. Economic, ecological and technological developments transcend existing boundaries and challenge the way we innovate. The challenge we face is to reinvent innovation as well, changing the way organisations and industries innovate and cooperate. Only with a new approach we can design a better future: an approach where stakeholders from government, organisations, companies and users participate in new ways of collaboration; an approach where solutions are realised that makes our society future-proof. Participatory innovation means that the innovation team changes: expanding beyond the boundaries of the own organisation. For organisations and companies, this is a huge step. Every partner must be willing to think and act beyond their own borders and participate in a joint effort. Participative innovation is a new way of working, where new challenges are encountered. In the field of urban lighting, this transformation is strongly felt. This paper will further explore the challenge and describe a rich case study where participative innovation is used to rethink, redesign and realise the solutions to transform urban lighting from functional lighting to improving social quality.
DOCUMENT
In health care, the use of nursing technological innovations, particularly technological products, is rapidly increasing; however, these innovations do not always align with nursing practice. An explanation for this issue could be that nursing technological innovations are developed and implemented with a top-down approach, which could subsequently limit the positive impact on practice. Cocreation with stakeholders such as nurses can help address this issue. Nowadays, health care centers increasingly encourage stakeholder participation, which is known as a bottom-up cocreation approach. However, little is known about the experience of nurses and their managers with this approach and the innovations it results in within the field of nursing care.
DOCUMENT
The COVID-19 pandemic has revealed the importance for university teachers to have adequate pedagogical and technological competences to cope with the various possible educational scenarios (face-to-face, online, hybrid, etc.), making use of appropriate active learning methodologies and supporting technologies to foster a more effective learning environment. In this context, the InnovaT project has been an important initiative to support the development of pedagogical and technological competences of university teachers in Latin America through several trainings aiming to promote teacher innovation. These trainings combined synchronous online training through webinars and workshops with asynchronous online training through the MOOC “Innovative Teaching in Higher Education.” This MOOC was released twice. The first run took place right during the lockdown of 2020, when Latin American teachers needed urgent training to move to emergency remote teaching overnight. The second run took place in 2022 with the return to face-to-face teaching and the implementation of hybrid educational models. This article shares the results of the design of the MOOC considering the constraints derived from the lockdowns applied in each country, the lessons learned from the delivery of such a MOOC to Latin American university teachers, and the results of the two runs of the MOOC.
DOCUMENT
With Fontys' new educational developments we became part of the project called 'BILOBA'. The principal outlines of this new education are based on developing competences, communication by ICT and setting up a major-minor educational system. Fontys has already developed 40 minors with topics related to several areas from institutes' backgrounds. One of the minor courses is 'Strategic Innovation'. The main goal of this minor is to make students competent to contribute to innovation in the SME's. Students will acquire relevant knowledge as well as relevant competences for developing innovation in companies. The outline of the minor is 50 % knowledge development and 50% project work, where the knowledge is used in practice. New in the project is the so-called 'Innovation Simulator'. In this simulator as part of the project students will be confronted with the real world of initiating innovation in the context of a real company. Role-play is an important element to this simulator. We need to learn more about this approach. We have done some evaluations during the spring of 2007 and have found some imperfections, which will be changed in June of 2007/2008 as an outcome of an evaluation with all of the participants.
DOCUMENT