Over the past decade, the maker movement and in its slipstream maker education have attained worldwide popularity among educators, politicians, and the media. Makers’ enthusiasm for creative design and construction, using old and new tools has proven contagious, and is worth exploration and critical reflection by the community of engineering and technology education (ETE). This chapter describes what has been said about “making” by philosophers and educators; what maker education is, and what is new and not so new about it; why it has gained momentum; what the evidence is about its effectiveness and its possible weaknesses; and how mainstream technology education may benefit from maker education. This chapter concludes with ideas for a research agenda.
LINK
Over the last two decades, institutions for higher education such as universities and colleges have rapidly expanded and as a result have experienced profound changes in processes of research and organization. However, the rapid expansion and change has fuelled concerns about issues such as educators' technology professional development. Despite the educational value of emerging technologies in schools, the introduction has not yet enjoyed much success. Effective use of information and communication technologies requires a substantial change in pedagogical practice. Traditional training and learning approaches cannot cope with the rising demand on educators to make use of innovative technologies in their teaching. As a result, educational institutions as well as the public are more and more aware of the need for adequate technology professional development. The focus of this paper is to look at action research as a qualitative research methodology for studying technology professional development in HE in order to improve teaching and learning with ICTs at the tertiary level. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach.
DOCUMENT
Transitions in health care and the increasing pace at which technological innovations emerge, have led to new professional approach at the crossroads of health care and technology. In order to adequately deal with these transition processes and challenges before future professionals access the labour market, Fontys University of Applied Sciences is in a transition to combining education with interdisciplinary practice-based research. Fontys UAS is launching a new centre of expertise in Health Care and Technology, which is a new approach compared to existing educational structures. The new centre is presented as an example of how new initiatives in the field of education and research at the intersection of care and technology can be shaped.
DOCUMENT
Teacher knowledge guides a teacher's behaviour in the classroom. Teacher knowledge for technology education is generally assumed to play an important role in affecting pupils' learning in technology. There are an abundant number of teacher knowledge models that visualise different domains of teacher knowledge, but clear empirical evidence on how these domains interact is lacking. Insights into the interaction of teacher knowledge domains could be useful for teacher training. In this study, the hypothesised relations between different domains of teacher knowledge for technology education in primary schools were empirically investigated. Subject matter knowledge, pedagogical content knowledge, attitude, and self-efficacy were measured with tests and questionnaires. Results from a path analysis showed that subject matter knowledge is an important prerequisite for both pedagogical content knowledge and self-efficacy. Subsequently, teachers' self-efficacy was found to have a strong influence on teachers' attitude towards technology. Based on the findings in this study, it is recommended that teacher training should first of all focus on the development of teachers' subject matter knowledge and pedagogical content knowledge. This knowledge will positively affect teachers' confidence in teaching and, in turn, their attitude towards the subject. More confidence in technology teaching and a more positive attitude are expected to increase the frequency of technology education, which consequently increases teaching experience and thereby stimulates the development of teachers' pedagogical content knowledge. This circle of positive reinforcement will eventually contribute to the quality of technology education in primary schools.
LINK
The purpose of this paper is to reflect on the experiences of safety and security management students, enrolled in an undergraduate course in the Netherlands, and present quantitative data from an online survey that aimed to explore the factors that have contributed to students’ satisfaction with, and engagement in, online classes during the COVID-19 pandemic. The main findings suggest an interesting paradox of technology, which is worth further exploration in future research. Firstly, students with self perceived higher technological skill levels tend to reject online education more often as they see substantial shortcomings of classes in the way they are administered as compared to the vast available opportunities for real innovation. Secondly, as opposed to democratising education and allowing for custom-made, individualistic education schedules that help less-privileged students, online education can also lead to the displacement of education by income-generating activities altogether. Lastly, as much as technology allowed universities during the COVID-19 pandemic to continue with education, the transition to the environment, which is defined by highly interactive and engaging potential, may in fact be a net contributor to the feelings of social isolation, digital educational inequality and tension around commercialisation in higher education.
MULTIFILE
A short paper on the whats and the hows of learning technology standardization
DOCUMENT
Numerous developements regarding Orthopaedic (Shoe) Technology takes place in the Netherlands and Belgium. A very close collaboration between FOntys, SVGB, KHKEmepen and NVOS-Orthobanda resulted in educational programs in Orthopaedic (Shoe) Technology.
DOCUMENT
The growing importance of technology in health care calls for interdisciplinary study programmes in which students with various backgrounds work together in exploring and designing new solutions for real-life problems. The Centre of Healthcare and Technology of Fontys University of Applied Sciences (Fontys EGT), the Netherlands, is presented as an example of how new initiatives in the field of education at the crossroads of health care and technology can be shaped and implemented in practice. A case study illustrating one of the student projects is provided as an example of the approach to educational innovation and interdisciplinary collaboration.
LINK
Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from 1994 to 2011. The integrated curricula were categorized according to a taxonomy of integration types synthesized from the literature. The characteristics that we deemed important were related to learning outcomes and success/fail factors. A focus group was formed to facilitate the process of analysis and to test tentative conclusions. We concluded that the levels in our taxonomy were linked to (a) student knowledge and skills, the enthusiasm generated among students and teachers, and the teacher commitment that was generated; and (b) the teacher commitment needed, the duration of the innovation effort, the volume and comprehensiveness of required teacher professional development, the necessary teacher support, and the effort needed to overcome tensions with standard curricula. Almost all projects were effective in increasing the time spent on science at school. Our model resolves Czerniac’s definition problem of integrating curricula in a productive manner, and it forms a practical basis for decision-making by making clear what is needed and what output can be expected when plans are being formulated to implement integrated education.
DOCUMENT
Part of: De Vries, M. (Ed.). (2017). Handbook of technology education (Springer international handbooks of education). Springer International Publishing.
DOCUMENT