The effectiveness of smart home technology in home care situations depends on the acceptance and use of the technology by both users and end-users. In the Netherlands many projects have started to introduce smart home technology and telecare in the homes of elderly people, but only some have been successful. In this paper, features for success and failure in the deployment of new (ICT) technology in home care are used to revise the technology acceptance model (TAM) into a model that explains the use of smart home and telecare technology by older adults. In the revised model we make the variable 'usefulness' more specific, by describing the benefits of the technology that are expected to positively affect technology usage. Additionally, we state that several moderator variables - that are expected to influence this effect - should be added to the model in order to explain why people eventually do (not) use smart home technology, despite the benefits and the intention to use. We categorize these variables, that represent the problems found in previous studies, in 'accessibility', 'facilitating conditions' and 'personal variables'.
Metaverse, a burgeoning technological trend that combines virtual and augmented reality, provides users with a fully digital environment where they can assume a virtual identity through a digital avatar and interact with others as they were in the real world. Its applications span diverse domains such as economy (with its entry into the cryptocurrency field), finance, social life, working environment, healthcare, real estate, and education. During the COVID-19 and post-COVID-19 era, universities have rapidly adopted e-learning technologies to provide students with online access to learning content and platforms, rendering previous considerations on integrating such technologies or preparing institutional infrastructures virtually obsolete. In light of this context, the present study proposes a framework for analyzing university students' acceptance and intention to use metaverse technologies in education, drawing upon the Technology Acceptance Model (TAM). The study aims to investigate the relationship between students' intention to use metaverse technologies in education, hereafter referred to as MetaEducation, and selected TAM constructs, including Attitude, Perceived Usefulness, Perceived Ease of Use, Self-efficacy of metaverse technologies in education, and Subjective Norm. Notably, Self-efficacy and Subjective Norm have a positive influence on Attitude and Perceived Usefulness, whereas Perceived Ease of Use does not exhibit a strong correlation with Attitude or Perceived Usefulness. The authors postulate that the weak associations between the study's constructs may be attributed to limited knowledge regarding MetaEducation and its potential benefits. Further investigation and analysis of the study's proposed model are warranted to comprehensively understand the complex dynamics involved in the acceptance and utilization of MetaEducation technologies in the realm of higher education
LINK
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.