This article deals with automatic object recognition. The goal is that in a certain grey-level image, possibly containing many objects, a certain object can be recognized and localized, based upon its shape. The assumption is that this shape has no special characteristics on which a dedicated recognition algorithm can be based (e.g. if we know that the object is circular, we could use a Hough transform or if we know that it is the only object with grey level 90, we can simply use thresholding). Our starting point is an object with a random shape. The image in which the object is searched is called the Search Image. A well known technique for this is Template Matching, which is described first.
DOCUMENT
This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with several techniques for object recognition and tracking, and with the guidance of a robot movement by means of computer vision. These experiments involve detection of coloured objects, object detection based on specific features, template matching with automatically generated templates, and interaction of a robot with a physical object that is viewed by a camera mounted on the robot.
DOCUMENT
In this paper, we address the problem of people detection and tracking in crowded scenes using range cameras. We propose a new method for people detection and localisation based on the combination of background modelling and template matching. The method uses an adaptive background model in the range domain to characterise the scene without people. Then a 3D template is placed in possible people locations by projecting it in the background to reconstruct a range image that is most similar to the observed range image. We tested the method on a challenging outdoor dataset and compared it to two methods that each shares one characteristic with the proposed method: a similar template-based method that works in 2D and a well-known baseline method that works in the range domain. Our method performs significantly better, does not deteriorate in crowded environments and runs in real time.
DOCUMENT