This investigation is undertaken based on the indicated improvements for fabric simulations, defined during the panel discussion “Driving the Uniformity of Material Measurements for Accurate Virtual Simulation” at the Product Innovation Apparel Conference (PI Apparel) in Berlin 2017, by experts from industry and academia. According to the expert panel, there is no coherency between methods used to measure the fabric properties and the simulated results of the same fabric among the different software packages. In praxis, fashion brands use different 3D software packages and need to measure a fabric with different methods to obtain the same fabric properties. In addition to the time investment, the simulated results for the same fabric vary significantly between the different software packages. The experts indicated the lack of standardization in material measurements, the lack of correlation between the data of the different measurement systems, and the lack of correlation between the simulated results of the different software packages for the same material. The contributions of the panel were followed up during the next edition of PI Apparel in the United States and resulted in the 3D Retail Coalition (RC) innovation committee to work on the indicated areas to improve the efficiency of material measurements. Moreover, this topic was further discussed during the PI Apparel Conference at Lago Maggiore in 2019 within the panel discussion "How Can We Collectively Achieve the Standardisation of Fabric Measurements for Digital Materials?"This paper investigates, on the one hand, the suitability of the current available measurement technologies for retrieving fabric parameters for precise virtual fabric and garment simulations. The focus is on the main properties required by the software packages—bending, shear, tensile and friction—aiming to identify and specify the most suitable methods to retrieve mechanical fabric properties and to start a standardization process for fabric measurements for virtual simulations.Seven fabric measurement methods and their output data are reviewed, namely the Kawabata Evaluation System (KES), the Fabric Assurance by Simple Testing (FAST), the Fabric Touch Tester (FTT), the CLO Fabric Kit 2.0, the Fabric Analyser by Browzwear (FAB), the Optitex Mark 10, and the cantilever principle. A set of fabrics with different mechanical behavior and physical drape has been tested with the FAB method. Other measurement methods have been discussed with expert users. In addition, fabrics have been tested with ZwickRoell’s (ZwickRoell) measuring systems applying various standard measurement methods, developed for similar materials. This publication will give for each property an overview of the different measurement methods, as well as recommendations based on their accuracy. Further, a SWOT analysis is provided. The outcome of this research can be used to pave the foundation for further work on the standardization of the fabric measurement.
LINK
During the 2015 Gorkha earthquake of 7.8 Mw that hit Kathmandu Valley, Nepal, numerous Nepalese Pagodas suffered extensive damage while others collapsed. Risk reduction strategies implemented in the region focused on disassembling historical structures and rebuilding them with modern material without in depth analysis of why they suffer damage and collapse. The aim of this paper is to evaluate the effectiveness of low-cost, low-intervention, reversible repair and strengthening options for the Nepalese Pagodas. As a case study, the Jaisedewal Temple, typical example of the Nepalese architectural style, was investigated. A nonlinear three-dimensional finite element model of the Jaisedewal Temple was developed and the seismic performance of the temple was assessed by undertaking linear, nonlinear static and nonlinear dynamic analyses. Also, different structural intervention options, suggested by local engineers and architects working in the restoration of temples in Nepal, were examined for their efficacy to withstand strong earthquake vibrations. Additionally, the seismic response of the exposed foundation that the Nepalese Pagodas are sitting on was investigated. From the results analysis, it was found that pushover analysis failed to capture the type of failure which highlights the necessity to perform time-history analysis to accurately evaluate the seismic response of the investigated temple. Also, stiffening the connections along the temple was found to enhance the seismic behaviour of the temple, while strengthening the plinth base was concluded to be insignificant. Outputs from this research could contribute towards the strategic planning and conservation of multi-tiered temples across Nepal and reduce their risk to future earthquake damage without seriously affecting their beautiful architectural heritage.
Laminated composites have important applications in modern aeronautical structures due to their extraordinary mechanical and environmental behaviour. Nevertheless, aircraft composite structures are highly vulnerable to impact damage, either by low-velocity sources during maintenance or high-velocity sources during in-flight events. Even barely visible impact damage induced by low-velocity loading, substantially reduces the residual mechanical performance and the safe-service life of the composites structures. Despite the extensive research already carried out, impact damage of laminated composite structures is still not well understood and it is an area of on-going research. Numerical modelling is considered as the most efficient tool as compared to the expensive and time-consuming experimental testing. In this paper, a finite element model based on explicit dynamics formulations is adopted. Hashin criterion is applied to predict the intra-laminar damage initiation and evolution. The numerical analysis is performed using the ABAQUS ® programme. The employed modelling approach is validated using numerical results found in the literature and the presented results show an acceptable correlation to the available literature data. It is demonstrated that the presented model is able to capture force-time response as well as damage evolution map for a range of impact energies.
De duurzame ontwikkelingsdoelen (SDGs) zijn een mondiaal kompas om van de wereld een betere plek te maken. Duurzame productie- en consumptiepatronen is één van de aandachtsgebieden en ook voor Nederland van nationaal en regionaal belang. Zo heeft Nederland de doelstelling geformuleerd dat in 2050 grondstoffen, producten en processen in de industrie klimaatneutraal en voor 80% circulair zijn (o.a. Missie Industrie). In dit kader wordt onderzocht hoe de verpakkingsproductie- en consumptieketen efficiënter en duurzamer gemaakt kan worden door bijvoorbeeld het toepassen van alternatieve, innovatieve voedselverpakking. Deze pilotstudie richt zich op de ontwikkeling van een duurzaam verpakkingsmateriaal dat eetbaar is, een zogenaamde ‘Fresh Layer’. Deze coating wordt als een beschermingslaag direct op het oppervlak van het voedselproduct aangebracht. De ontwikkeling van dit product is complex, omdat het product zowel functioneel, bioafbreekbaar en eetbaar moet zijn. Zowel in theorie als in praktijk wordt onderzocht welke criteria met betrekking tot functionele toepasbaarheid er gelden en welke biopolymeren gecombineerd met welke additieven er voldoen aan deze gestelde criteria. Op basis van literatuurstudie wordt een overzicht gemaakt van mogelijk succesvolle combinaties die voldoen aan de verpakkingseisen van voedsel. Het polysacharide alginaat wordt daarbij als basis gebruikt. Vervolgnes wordt er experimenteel onderzocht welke verhoudingen van alginaat met andere polysacharides in combinatie met weekmakers, zoals glycerol, geschikt zijn om de houdbaarheid van hard fruit te verlengen en functionele eigenschappen zoals waterdoorlaatbaarheid, tensile strenght, firmness, geur en structuur, worden bepaald. Tevens wordt er een inventarisatie gemaakt van bruikbare grondstoffen afkomstig vanuit reststromen van de Agrofood en Aquacultuur sector en de mogelijke toepasbaarheid binnen de scope van de voedselketen. Afsluitend wordt een stakeholdermeeting georganiseerd met relevante partijen uit de onderzoekswereld en voedselketen om de onderzoeksresultaten te delen en met elkaar vervolgacties te formuleren.
In order to decrease the environmental impact caused by the construction sector, biobased materials need to be further developed to allow better integration and acceptance in the market. Mycelium composites are innovative products, with intrinsic properties which rise the attention of architects, designers and industrial companies. Both mycelium foam and board material have the potential to substitute conventional toxic materials. The mechanical properties of these products are influenced by their production process. For example, bending and tensile strengths have shown to be higher in heat pressed samples (F. V.W. Appels, 2019). The heat press process related to mycelium boards, needs further development in terms of process timing and of parameters, as temperature, pressure and duration of pressing. It is the need to research mycelium boards which drove the partner companies to approach the Centre of Expertise BioBased Economy (CoEBBE). The project partners are the following: KNN Cellulose BV, Fungalogic and V8 Architects. The interest of each partner is focused on different aspects of mycelium boards, which can be summarised in the following questions: • Is it possible to use cellulose to produce mycelium composites? (KNN Cellulose) • What are the different production parameters and how can these be optimized? (V8 Architects, Fungalogic) • What are the mechanical material properties and (how) can mycelium boards be used for interior or construction purposes? (V8 Architects, Fungalogic) These questions merge together in the research question: is it possible to create a mycelium board with cellulose biomass that can be used as a substitution of conventional board materials? The developed research will bring specific knowledge to each involved partner. In particular, KNN Cellulose will have a new application for their product; Fungalogic will acquire knowledge on board materials and have a potential new product; V8 Architects will gain specific knowledge on mycelium products.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.