This report was produced within the framework of the RAAK PRP project ‘Veiligheid op de werkvloer’. Personal protective equipment (PPE) is used on a daily basis by millions of people all over the EU, voluntarily or as a result of EU legislation. In this report we deal specifically with the textile/garment aspects of PPE. In this context we must consider the fact that PPE encompasses a huge area with hundreds of different applications of materials and systems tuned to specific needs;from a materials point of view it represents a complex area due to the large diversity of labour conditions. Textiles and clothing represent an area where PPE is an important area of attention. On a global scale it is an area of much research. Safety and comfort are becoming more and more important and these aspects must be in balance. Uncomfortable systems will not be used and put safe working at risk. Thus there is a continuous need for technological innovation to improve the effectiveness of PPE systems. Specialization and specific combinations aimed at use under well-defined conditions contributes to finding a good balance between comfort and safety. The design of products, taking into account the individual needs represent an area of intensive research: Safety directed ‘fashion design’.The ultimate goal is the development of proactive systems by which workers (but capital goods as well) are optimally protected. There is also a lot of attention for maintenance and cleaning since protective functions may deteriorate as a result of cleaning processes. Another important point is standardization because producers need directions for product development and supply of goods. In our overview we make a distinction between static and dynamic systems. Static systems provide passive protection, simply by being a part of an equipment that separates the worker from the danger zone. Dynamic systems are more ‘intelligent’ because these can react to stimuli and subsequently can take action. These dynamic systems use sensors, communication technology and actuators. From this research the following may be concluded: 1. Safety is obtained by choice of materials for a textile construction, including the use of coatings with special properties, application of specific additives and he use of special designed fibre shapes. 2. The architecture and ultimate construction and the combinations with other materials result in products that respond adequately. This is of great importance because of the balance comfort – safety. But a lot can be improved in this respect. 3. Insight in human behaviour, ambient intelligence and systems technology will lead to new routes for product development and a more active approach and higher levels of safety on the work floor. Consequently there is a lot of research going on that is aimed at improved materials and systems. Also due to the enormous research area of smart textiles a lot of development is aimed at the integration of new technology for application in PPE. This results in complex products that enhance both passive and active safety. Especially the commissioners, government and industry, must pay a lot of attention to specifying the required properties that a product should meet under the specific conditions. This has a cost aspect as well because production volumes are usually not that large if for small groups of products specific demands are defined. We expect that through the technology that is being developed in the scope of mass customization production technologies will be developed that allows production at acceptable cost, but still aimed at products that have specific properties for unique application areas. Purchasing is now being practiced through large procurements. We must than consider the fact that specification takes place on the basis of functionality. In that case we should move away from the current cost focus but the attention should shift towards the life cycle
MULTIFILE
In this paper, we conceptualize circular economy ecosystem emergence as the intersection of extant innovation, entrepreneurial, and industrial ecosystems. From our rich qualitative data in the circular textiles and apparel industry, we identify drivers behind emergence and uncover the pivotal role ecosystem orchestrators play in governing the interdependencies between actors and activities across the different intersecting ecosystems. From our findings, we theorize circular economy ecosystem emergence as a transitional phase or “real utopia” that, with purposeful orchestration, can potentially become a future desired state. In doing so, we make novel contributions to the literature on economic ecosystems, circular economy, and prospective theorizing, a nascent future-oriented perspective on theory building. Our research offers valuable insights for practitioners and policymakers aiming to accelerate circular economy transformation.
DOCUMENT
We investigate entrepreneurial ecosystems that support circular start-ups and innovation. We argue that entrepreneurial ecosystems for circularity are constellations of existing entrepreneurial and innovation ecosystems that extend across geographies and sectors. Our research question centres on understanding ecosystem intermediation that facilitates the embedding of circular start-ups in different ecosystems and addresses a pertinent gap in the literature about ecosystem intermediation for circular transitions and circular start-ups Focusing on the emerging circular transition in the textiles and apparel industry, we gathered data from in-depth interviews, field observations, and archival documentation over a seven-year period. Our findings show that entrepreneurial ecosystems for circular start-ups are purposefully intermediated at a meta level, combining elements of extant ecosystems to focus on circularity. Drawing on these insights, we conceptualize ecosystem intermediation as connecting diverse ecosystems across geographic and sectoral boundaries. Our study contributes to the literatures on circular entrepreneurship, circular ecosystems, and ecologies of system intermediation as well as provides practical implications for practitioners and policy makers.
DOCUMENT
The main challenge for the Dutch and European textile and clothing sector is to make a paradigm shift from labour intensive industry to knowledge based industry. This shift is essential for gaining a competitive edge and to develop innovative products and eco-friendly processes. A promising technology to achieve this is digital printing. This future oriented process is aimed to achieve high energy, water, and chemical savings and therefore a drastic reduction of waste. The technology breakthrough is based on a novel Eco-friendly flexible digital process. The basic components of Inkjet printers are hardware, software, inks and the substrate, which in this case is a textile.Inkjet processes can be divided in two main categories, image printing and functional printing. Image printing is already a mature technology and commercially available. The biggest advantages of inkjet printing over screen printing techniques is ease of operation, cost savings and most importantly ability to handle smaller volume (mass customisation). The functional printing is still in the research and development stage. It offers immense possibilities to bring various functional and nano-materials on textile surface on demand in a continuous process at atmospheric conditions and room temperature. Additionally functionality can be delivered at specific location on the textile with a possibility to apply more than one functionality either side by side or layer by layer. Inkjet processes could replace conventional high temperature and wet textile processes. Digital micro-disposal of fluids is expected to alter textile economics in terms of production speeds and on demand production.Nevertheless inkjet printing/finishing on textiles surfaces with different functional formulations is a major challenge. This is because of the close interaction between ink properties and chemistry, the piezo inkjets and the textile substrate. A typical process involves the development of stable jettable colloidal functional inks that will be delivered on well prepared textile substrate, followed by proper curing/fixation.The case we discuss in the manuscript is the development of a smart textile based heatable pair of trousers especially designed for people with disabilities. The inkjet printed textile samples were prepared and compared with conductive samples produced with well-established techniques such as weaving, knitting, nonwoven techniques and embroidering.
MULTIFILE
This article investigates the phenomenon of rebound effects in relation to a transition to a Circular Economy (CE) through qualitative inquiry. The aim is to gain insights in manifestations of rebound effects by studying the Dutch textile industry as it transitions to a circular system, and to develop appropriate mitigation strategies that can be applied to ensure an effective transition. The rebound effect, known originally from the energy efficiency literature, occurs when improvements in efficiency or other technological innovations fail to deliver on their environmental promise due to (behavioral) economic mechanisms. The presence of rebound in CE contexts can therefore lead to the structural overstatement of environmental benefits of certain innovations, which can influence reaching emission targets and the preference order of recycling. In this research, the CE rebound effect is investigated in the Dutch textile industry, which is identified as being vulnerable to rebound, yet with a positive potential to avoid it. The main findings include the very low awareness of this effect amongst key stakeholders, and the identification of specific and general instances of rebound effects in the investigated industry. In addition, the relation of these effects to Circular Business Models and CE strategies are investigated, and placed in a larger context in order to gain a more comprehensive understanding about the place and role of this effect in the transition. This concerns the necessity for a new approach to how design has been practiced traditionally, and the need to place transitional developments in a systems perspective. Propositions that serve as theory-building blocks are put forward and include suggestions for further research and recommendations about dealing with rebound effects and shaping an eco-effective transition. Thomas Siderius, Kim Poldner, Reconsidering the Circular Economy Rebound effect: Propositions from a case study of the Dutch Circular Textile Valley, Journal of Cleaner Production, Volume 293, 2021, 125996, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.125996.
DOCUMENT
We investigate circular entrepreneurial ecosystems that support circular startups and innovation. We argue that circular entrepreneurial ecosystems are constellations of existing entrepreneurial ecosystems that extend across geographies and sectors, requiring ecosystem intermediaries to bridge institutional environments and provide access to actors and resources. Focusing on the emerging circular transition in the textiles and apparel industry, we gathered data from in-depth interviews, field observations, and archival documentation over a seven--year period. Our findings show that circular entrepreneurial ecosystems are purposefully intermediated at a meta level, generating nested and distributed ecosystems. To elucidate circular ecosystem intermediation, we devised a model of system level 5 intermediation that extends the conceptualization of ecologies of system intermediation across geographic and sector boundaries. Our study contributes to the literatures on circular entrepreneurship, circular ecosystems, and ecosystem intermediation as well as provides practical implications for practitioners and policy makers.
DOCUMENT
Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are their high modulus and strength, stiffness, stretch or elasticity, wrinkle and abrasion resistances, relatively low cost, convenient processing, tailorable performance and easy recycling. The downside to synthetic fibers use are reduced wearing comfort, build-up of electrostatic charge, the tendency to pill, difficulties in finishing, poor soil release properties and low dyeability. These disadvantages are largely associated with their hydrophobic nature. To render their surfaces hydrophilic, various physical, chemical and bulk modification methods are employed to mimic the advantageous properties of their natural counterparts. This review is focused on the application of recent methods for the modification of synthetic textiles using physical methods (corona discharge, plasma, laser, electron beam and neutron irradiations), chemical methods (ozone-gas treatment, supercritical carbon dioxide technique, vapor deposition, surface grafting, enzymatic modification, sol-gel technique, layer-by-layer deposition of nano-materials, micro-encapsulation method and treatment with different reagents) and bulk modification methods by blending polymers with different compounds in extrusion to absorb different colorants. Nowadays, the bulk and surface functionalization of synthetic fibers for various applications is considered as one of the best methods for modern textile finishing processes (Tomasino, 1992). This last stage of textile processing has employed new routes to demonstrate the great potential of nano-science and technology for this industry (Lewin, 2007). Combination of physical technologies and nano-science enhances the durability of textile materials against washing, ultraviolet radiation, friction, abrasion, tension and fading (Kirk–Othmer, 1998). European methods for application of new functional finishing materials must meet high ethical demands for environmental-friendly processing (Fourne, 1999). For this purpose the process of textile finishing is optimized by different researchers in new findings (Elices & Llorca, 2002). Application of inorganic and organic nano-particles have enhanced synthetic fibers attributes, such as softness, durability, breathability, water repellency, fire retardancy and antimicrobial properties (Franz, 2003; McIntyre, 2005; Xanthos, 2005). This review article gives an application overview of various physical and chemical methods of inorganic and organic structured material as potential modifying agents of textiles with emphasis on dyeability enhancements. The composition of synthetic fibers includes polypropylene (PP), polyethylene terephthalate (PET), polyamides (PA) or polyacrylonitrile (PAN). Synthetic fibers already hold a 54% market share in the fiber market. Of this market share, PET alone accounts for almost 50% of all fiber materials in 2008 (Gubitz & Cavaco-Paulo, 2008). Polypropylene, a major component for the nonwovens market accounts for 10% of the market share of both natural and synthetic fibers worldwide (INDA, 2008 and Aizenshtein, 2008). It is apparent that synthetic polymers have unique properties, such as high uniformity, mechanical strength and resistance to chemicals or abrasion. However, high hydrophobicity, the build-up of static charges, poor breathability, and resistant to finishing are undesirable properties of synthetic materials (Gubitz & Cavaco-Paulo, 2008). Synthetic textile fibers typically undergo a variety of pre-treatments before dyeing and printing is feasible. Compared to their cotton counterparts, fabrics made from synthetic fibers undergo mild scouring before dyeing. Nonetheless, these treatments still create undesirable process conditions wh
MULTIFILE
The textiles and apparel industry is a major contributor to economic development while at the same time being one of the most polluting industries due to its lengthy supply chain and resource intensive production operations. To address these sustainability challenges, digitalization is seen as one of the potential solutions. Using the lens of sustainability and digitalization in Supply Chain Management (SCM), this paper analyses the sustainability and digitalization status of Dutch textile and apparel firms. We used a mixed methodology of quantitative text mining of 94 Dutch textile and apparel firms as well as qualitative thematic and coding analysis of experts’ views and opinions on sustainability and digitalization in the Dutch textiles and apparel industry. Quantitative analysis of website data shows that Dutch textile and apparel firms predominantly communicate the environmental, to a lesser extent social, and least of all economic sustainability factors. Keyword analysis also shows that the use of technological keyword indicators is less prominent, while certain technologies such as IoT, sensors and blockchain correlate mostly to environmental sustainability factors. Moreover, qualitative analysis reveals that to address sustainability via digitalization, it is important to link sustainability goals to Key Performance Indicators, which requires data for traceability. We recommend firms to: (1) re-evaluate their business models and assess the extent traceability can be incorporated in their sustainability strategy; (2) enhance stakeholder collaboration within and outside the supply chain to utilize traceability; and (3) proactively use traceability information to improve transparency and accountability to meet legal requirements and address greenwashing. This study contributes to literature by showing the importance of traceability for (a) linking sustainability and digitalization in SCM, b) achieving the ultimate goals of transparency and accountability, and c) predicting demand and supply to address overproduction and waste in the textiles and apparel sector.
MULTIFILE
Interactive design is an emerging trend in dementia care environments. This article describes a research project aiming at the design and development of novel spatial objects with narrative attributes that incorporate embedded technology and textiles to support the wellbeing of people living with dementia. In collaboration with people with dementia, this interdisciplinary research project focuses on the question of how innovative spatial objects can be incorporated into dementia long-term care settings, transforming the space into a comforting and playful narrative environment that can enhance self-esteem while also facilitating communication between people living with dementia, family, and staff members. The research methodologies applied are qualitative, including Action Research. Participatory design methods with the experts by experience—the people with dementia—and health professionals have been used to inform the study. Early findings from this research are presented as design solutions comprising a series of spatial object prototypes with embedded technology and textiles. The prototypes were evaluated primarily by researchers, health professionals, academics, and design practitioners in terms of functionality, aesthetics, and their potential to stimulate engagement. The research is ongoing, and the aim is to evaluate the prototypes by using ethnographic and sensory ethnography methods and, consequently, further develop them through co-design workshops with people living with dementia.
MULTIFILE
The in-depth assessment of the situation of the European textile and clothing sector is composed by six independent reports with a close focus on key aspects useful to understand the dynamics and the development of the textile and clothing industry, drivers of change – most notably the impact of the financial crisis – and identification of policy responses and best practices. This has been done in six specific tasks leading to the six reports: Task 1 Survey on the situation of the EU textile and clothing sector Task 2 Report on research and development Task 3 Report on SME situation Task 4 Report on restructuring Task 5 Report on training and Education Task 6 Report on innovation practices. This final report draws on the key findings of each independent report, highlighting major conclusions in order to describe the situation of the textile and clothing industry and the way forward for the sector. In line with the terms of reference the findings in the six reports have been analysed in connection with the developments following the recommendations drafted by the High Level Group on textiles and clothing (further referred to as HLG), installed in 2004 as a response to the European Commission Communication of 29th of October 2003 on the textile and clothing industry. The HLG was composed of leading personalities representing stakeholders in the textiles and clothing industry and issued two reports entailing a vision and recommendations.
MULTIFILE