The five papers in the DRS 2022 track “AI and the Conditions of Design: Towards A New Set of Design Ideals” offer radical lenses to change the narrative around AI and open pathways towards pluralist digital futures, signaling redirections for experimenting with more inclusive and imaginative design practices.
circular economy as a system change is gaining more attention, reusing materials and products is part of this, but an effective method for repurposing seems to be missing. Repurpose is a strategy which uses a discarded product or its parts in a new product with a different function. Literature on specific design methods for 'repurposing’ is limited and current design methods do not specifically address repurpose driven design. This paper aims to contribute to the literature on repurpose as a circularity strategy by evaluating repurpose driven design processes which are deployed in practice and evaluate to what extend existing design methods are suited for repurpose driven design. Building on a multiple case study two main design approaches are identified. First, a goal-oriented approach in which a client commissions the design studio. Second, a resource-oriented approach in which a discarded product or its components is the starting point of a design process initiated by the designers. Although both approaches follow a more or less standard design process, each intervenes with repurpose specific input at different phases in the design process, depending on the role of the designer. Results show that in order to be able to deal with the inconsistencies of discarded products, specific repurpose-related tools are required for an efficient and effective repurpose driven design process. Future research should address these issues in order to develop comprehensive and practical tools that accommodate the two repurpose driven design approaches.
Author supplied from the article: ABSTRACT Increasing global competition in manufacturing technology puts pressure on lead times for product design and production engineering. By the application of effective methods for systems engineering (engineering design), the development risks can be addressed in a structured manner to minimise chances of delay and guarantee timely market introduction. Concurrent design has proven to be effective in markets for high tech systems; the product and its manufacturing means are simultaneously developed starting at the product definition. Unfortunately, not many systems engineering methodologies do support development well in the early stage of the project where proof of concept is still under investigation. The number of practically applicable tools in this stage is even worse. Industry could use a systems engineering method that combines a structured risk approach, concurrent development, and especially enables application in the early stage of product and equipment design. The belief is that Axiomatic Design can provide with a solid foundation for this need. This paper proposes a ‘Constituent Roadmap of Product Design’, based on the axiomatic design methodology. It offers easy access to a broad range of users, experienced and inexperienced. First, it has the ability to evaluate if knowledge application to a design is relevant and complete. Secondly, it offers more detail within the satisfaction interval of the independence axiom. The constituent roadmap is based on recent work that discloses an analysis on information in axiomatic design. The analysis enables better differentiation on project progression in the conceptual stage of design. The constituent roadmap integrates axiomatic design and the methods that harmonise with it. Hence, it does not jeopardise the effectiveness of the methodology. An important feature is the check matrix, a low threshold interface that unlocks the methodology to a larger audience. (Source - PDF presented at ASME IMECE (International Mechanical Engineering Congress and Exposition