As people age, physiological changes affect their thermal perception, sensitivity and regulation. The ability to respond effectively to temperature fluctuations is compromised with physiological ageing, upsetting the homeostatic balance of health in some. As a result, older people can become vulnerable at extremes of thermal conditions in their environment. With population ageing worldwide, it is an imperative that there is a better understanding of older people’s thermal needs and preferences so that their comfort and wellbeing in their living environment can be optimised and healthy ageing achieved. However, the complex changes affecting the physiological layers of the individual during the ageing process, although largely inevitable, cannot be considered linear. They can happen in different stages, speeds and intensities throughout the ageing process, resulting in an older population with a great level of heterogeneity and risk. Therefore, predicting older people’s thermal requirements in an accurate way requires an in-depth investigation of their individual intrinsic differences. This paper discusses an exploratory study that collected data from 71 participants, aged 65 or above, from 57 households in South Australia, over a period of 9 months in 2019. The paper includes a preliminary evaluation of the effects of individual intrinsic characteristics such as sex, body composition, frailty and other factors, on thermal comfort. It is expected that understanding older people’s thermal comfort from the lens of these diversity-causing parameters could lead to the development of individualised thermal comfort models that fully capture the heterogeneity observed and respond directly to older people’s needs in an effective way. (article starts at page 13)
MULTIFILE
As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT
As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT
Article only: CC-BY licence. As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies theireffectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the workpresented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT
As a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies theireffectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the workpresented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
DOCUMENT
Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.
DOCUMENT
This chapter reports on the findings of a research project aimed at investigating the actual thermal environment of the housing of older occupants (aged 65 or over) in South Australia. The study documented their thermal preferences and behaviours during hot and cold weather and relationships to their well-being and health. Information was collected in three phases, a telephone survey, focus group discussions and detailed house environmental monitoring that employed an innovative data acquisition system to measure indoor conditions and record occupant perceptions and behaviours. The research covered three climate zones and extended over a nine-month period. The detailed monitoring involved a total of 71 participants in 57 houses. More than 10,000 comfort/well-being questionnaire responses were collected with more than 1,000,000 records of indoor environmental conditions. Analysis of the data shows the relationships between thermal sensation and self-reported well-being/health and the various adaptive strategies the occupants employ to maintain their preferred conditions. Findings from the research were used to develop targeted recommendations and design guidelines intended for older people with specific thermal comfort requirements and more broadly advice for architects, building designers and policymakers. Original publication at: Routledge Handbook of Resilient Thermal Comfort Chapter 7: https://doi.org/10.4324/9781003244929-10
MULTIFILE
In face of climate change and urbanization, the need for thermally comfortable outdoor urban spaces is increasing. In the design of the thermally comfortable urban spaces and decision making about interventions that enhance thermal comfort, scientists and professionals that work for cities use meteorological measurements and models. These measurements can be done by professional and accurate meteorological sensors, but also by simpler mobile instruments such as the easy-to-use Kestrel weather meters. In using these simple type of sensors, it is important to know what the performance of these sensors is for outdoor thermal comfort assessments and how they can be used by scientists and professionals in decision making about urban designs that enhance thermal comfort.To answer these questions, we carried out three experiments in the summer of 2020 in Amsterdam, in which we tested the 11 Kestrel 5400 heat stress sensors and assessed the performance of this equipment for thermal comfort studies. We concluded that Kestrel sensors can be used very well for assessing differences in air temperature and PET (Physiological Equivalent Temperature) between outdoor built environments. For both air temperature and PET, the RMSE between the 11 Kestrel sensors was 0.5 °C maximum when measuring the same conditions. However, Kestrel sensors that were placed in the sun without a wind vane mounted to the equipment showed large radiation errors. In this case, temperature differences up to 3.4 °C were observed compared to Kestrels that were shaded. The effect of a higher air temperature on the PET calculation is, however, surprisingly small. A sensitivity analysis showed that an increase of 3 °C in the air temperature results in a maximal PET reduction of 0.5 °C. We concluded that Kestrel sensors can very well be used for assessing differences between air temperatures and PET between two locations and assessing the thermal effects of urban designs, but care should be taken when air temperature measurements are carried out in the sun. We always recommend using the wind vanes to deviate from high radiant input orientations for the temperature sensor, and placing the stations next to each other at the beginning and at the end of the measurements to check whether the stations actually measure the same values. Any differences can be corrected afterwards.
DOCUMENT
Although there is an array of technical solutions available for retrofitting the building stock, the uptake of these by owner‐occupants in home improvement activities is lagging. Energy performance improvement is not included in maintenance, redecoration, and/or upgrading activities on a scale necessary to achieve the CO2 reduction aimed for in the built environment. Owner‐occupants usually adapt their homes in response to everyday concerns, such as having enough space available, increasing comfort levels, or adjusting arrangements to future‐proof their living conditions. Home energy improvements should be offered accordingly. Retrofit providers typically offer energy efficiency strategies and/or options for renewable energy generation only and tend to gloss over home comfort and homemaking as key considerations in decision‐making for home energy improvement. In fact, retrofit providers struggle with the tension between customisation requirements from private homeowners and demand aggregation to streamline their supply chains and upscale their retrofit projects. Customer satisfaction is studied in three different Dutch approaches to retrofit owner‐occupied dwellings to increase energy efficiency. For the analysis, a customer satisfaction framework is used that makes a distinction between satisfiers, dissatisfiers, criticals, and neutrals. This framework makes it possible to identify and structure different relevant factors from the perspective of owner‐occupants, allows visualising gaps with the professional perspective, and can assist to improve current propositions.
MULTIFILE
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
DOCUMENT