Thermal comfort is determined by the combined effect of the six thermal comfort parameters: temperature, air moisture content, thermal radiation, air relative velocity, personal activity and clothing level as formulated by Fanger through his double heat balance equations. In conventional air conditioning systems, air temperature is the parameter that is normally controlled whilst others are assumed to have values within the specified ranges at the design stage. In Fanger’s double heat balance equation, thermal radiation factor appears as the mean radiant temperature (MRT), however, its impact on thermal comfort is often ignored. This paper discusses the impacts of the thermal radiation field which takes the forms of mean radiant temperature and radiation asymmetry on thermal comfort, building energy consumption and air-conditioning control. Several conditions and applications in which the effects of mean radiant temperature and radiation asymmetry cannot be ignored are discussed. Several misinterpretations that arise from the formula relating mean radiant temperature and the operative temperature are highlighted, coupled with a discussion on the lack of reliable and affordable devices that measure this parameter. The usefulness of the concept of the operative temperature as a measure of combined effect of mean radiant and air temperatures on occupant’s thermal comfort is critically questioned, especially in relation to the control strategy based on this derived parameter. Examples of systems which deliver comfort using thermal radiation are presented. Finally, the paper presents various options that need to be considered in the efforts to mitigate the impacts of the thermal radiant field on the occupants’ thermal comfort and building energy consumption.
DOCUMENT
An important consideration for future age-friendly cities is that older people are able to live in housing appropriate for their needs. While thermal comfort in the home is vital for the health and well-being of older people, there are currently few guidelines about how to achieve this. This study is part of a research project that aims to improve the thermal environment of housing for older Australians by investigating the thermal comfort of older people living independently in South Australia and developing thermal comfort guidelines for people ageing-in-place. This paper describes the approach fundamental for developing the guidelines, using data from the study participants’ and the concept of personas to develop a number of discrete “thermal personalities”. Hierarchical Cluster Analysis (HCA) was implemented to analyse the features of research participants, resulting in six distinct clusters. Quantitative and qualitative data from earlier stages of the project were then used to develop the thermal personalities of each cluster. The thermal personalities represent dierent approaches to achieving thermal comfort, taking into account a wide range of factors including personal characteristics, ideas, beliefs and knowledge, house type, and location. Basing the guidelines on thermal personalities highlights the heterogeneity of older people and the context-dependent nature of thermal comfort in the home and will make the guidelines more user-friendly and useful. Original publication at MDPI: https://doi.org/10.3390/ijerph17228402 © 2020 by the authors. Licensee MDPI.
MULTIFILE
In indoor comfort research, thermal comfort of care-professionals in hospital environment is a little explored topic. To address this gap, a mixed methods study, with the nursing staff in hospital wards acting as participants,was undertaken. Responses were collected during three weeks in the summer (n = 89), and four weeks in the autumn (n = 43). Analysis of the subjective feedback from nurses and the measured indoor thermal conditions revealed that the existent thermal conditions (varying between 20 and 25 °C) caused a slightly warm thermal sensation on the ASHRAE seven point scale. This led to a slightly unacceptable thermal comfort and a slightly obstructed self-appraised work performance. The results also indicated that the optimal thermal sensation for the nurses—suiting their thermal comfort requirements and work performance—would be closer to‘slightly cool’than neutral. Using a design approach of dividing the hospital ward into separate thermal zones, with different set-points for respectively patient and care-professionals’comfort, would seem to be the ideal solution that contributes positively to the work environment and, at the same time, creates avenues for energy conservation.
DOCUMENT
To understand how transition across different thermal zones in a building impacts the thermal perception of occupants, the current work examines occupant feedback in two work environments — nursing staff in hospital wards and the workers in an office. Both studies used a mix of subjective surveys and objective measurements. A total of 96 responses were collected from the hospital wards while 142 were collected from the office. The thermal environment in the hospital wards was perceived as slightly warm on the ASHRAE thermal sensation scale (mean TSV = 1.2), while the office workers rated their environment on the cool side (mean TSV = 0.15). The results also show that when the transitions were across temperature differences within 2 °C, the thermal perception was not impacted by the magnitude of the temperature difference — as reflected in occupant thermal sensation and thermal comfort/thermal acceptability vote. This would imply that the effect of temperature steps on thermal perception, if any, within these boundaries, was extremely short lived. These findings go towards establishing the feasibility of heterogeneous indoor thermal environments and thermal zoning of workspaces for human comfort.
DOCUMENT
Stormwater flooding and thermal stresses of citizens are two important phenomena for most of the dense urban area. Due to the climate change, these two phenomena will occur more frequently and cause serious problems. Therefore, the sectors for public health and disaster management should be able to assess the vulnerability to stormwater flooding and thermal stress. To achieve this goal, two cities in different climate regions and with different urban context have been selected as the pilot areas, i.eY., Tainan, Taiwan and Groningen, Netherlands. Stormwater flooding and thermal stress maps will be produced for both cities for further comparison. The flooding map indicates vulnerable low lying areas, where the thermal stress map indicates high Physiological Equivalent Temperature (PET) values (thermal comfort) in open areas without shading. The combined map indicates the problem areas of flooding and thermal stress and can be used by urban planners and other stakeholders to improve the living environment.
DOCUMENT
As people age, physiological changes affect their thermal perception, sensitivity and regulation. The ability to respond effectively to temperature fluctuations is compromised with physiological ageing, upsetting the homeostatic balance of health in some. As a result, older people can become vulnerable at extremes of thermal conditions in their environment. With population ageing worldwide, it is an imperative that there is a better understanding of older people’s thermal needs and preferences so that their comfort and wellbeing in their living environment can be optimised and healthy ageing achieved. However, the complex changes affecting the physiological layers of the individual during the ageing process, although largely inevitable, cannot be considered linear. They can happen in different stages, speeds and intensities throughout the ageing process, resulting in an older population with a great level of heterogeneity and risk. Therefore, predicting older people’s thermal requirements in an accurate way requires an in-depth investigation of their individual intrinsic differences. This paper discusses an exploratory study that collected data from 71 participants, aged 65 or above, from 57 households in South Australia, over a period of 9 months in 2019. The paper includes a preliminary evaluation of the effects of individual intrinsic characteristics such as sex, body composition, frailty and other factors, on thermal comfort. It is expected that understanding older people’s thermal comfort from the lens of these diversity-causing parameters could lead to the development of individualised thermal comfort models that fully capture the heterogeneity observed and respond directly to older people’s needs in an effective way. (article starts at page 13)
MULTIFILE
Urban planning will benefit from tools that can assess the vulnerabilityto thermal stress in urban dense cities. Detailed quick-scan heat stressmaps, as made in this study for Johannesburg, have proven valuable inthe decision-making process on this topic. It raised awareness on theurgent need to implement measures to tackle the effects of climatechange and urbanization. Awareness on heat stress has led to theimplementation of measures to mitigate the effects of climate change.As in other countries, nature-based solutions (e.g. green roofs and walls,swales, rain gardens, planting trees etc) are considered in urban areasin South Africa for various reasons. The awareness of the effect ofnature based solutions on heat stress is still low, which can be improvedby the use of heat stress maps. Some of these measures are alreadymapped on the open source web tool, Climate-scan(www.climatescan.nl) for international knowledge exchange aroundthe globe.
DOCUMENT
Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.
DOCUMENT
Thermal disinfection is probably the oldest water treatment method ever used. Similarly to other disinfection processes, it targets the inactivation of pathogenic (micro)organisms present in water, wastewater and other media. In this work, a pilot-scale continuous-flow thermal disinfection system was investigated using highly contaminated hospital wastewater as influent without any pre-treatment step for turbidity removal. The results proved that the tested system can be used with influent turbidity as high as 100 NTU and still provide up to log 8 microbial inactivation. Further results have shown energy consumption comparable to other commercially available thermal disinfection systems and relatively low influence on the investigated physical–chemical parameters.
DOCUMENT
This chapter reports on the findings of a research project aimed at investigating the actual thermal environment of the housing of older occupants (aged 65 or over) in South Australia. The study documented their thermal preferences and behaviours during hot and cold weather and relationships to their well-being and health. Information was collected in three phases, a telephone survey, focus group discussions and detailed house environmental monitoring that employed an innovative data acquisition system to measure indoor conditions and record occupant perceptions and behaviours. The research covered three climate zones and extended over a nine-month period. The detailed monitoring involved a total of 71 participants in 57 houses. More than 10,000 comfort/well-being questionnaire responses were collected with more than 1,000,000 records of indoor environmental conditions. Analysis of the data shows the relationships between thermal sensation and self-reported well-being/health and the various adaptive strategies the occupants employ to maintain their preferred conditions. Findings from the research were used to develop targeted recommendations and design guidelines intended for older people with specific thermal comfort requirements and more broadly advice for architects, building designers and policymakers. Original publication at: Routledge Handbook of Resilient Thermal Comfort Chapter 7: https://doi.org/10.4324/9781003244929-10
MULTIFILE