The purpose of this study is to investigate the impact that unevenly allocating buffer capacity has on throughput and average buffer level regarding unreliable lines to better understand the relevant factors in supply chain design. Results show that the best patterns for unreliable merging lines in terms of generating higher throughput rates (TR), as compared to a balanced merging line counterpart, are those where total available buffer capacity is allocated between workstations in either an inverted bowl pattern (i.e. concentrating buffer capacity towards the centre of the line), or a balanced line pattern. In contrast, when considering the trade-off between generating revenue resulting from TR and reducing cost created by average buffer levels (ABL), we found that the balanced pattern was not the best pattern. The best pattern was dependent on the length of the line and on the total buffer capacity as shorter lines with very constrained buffers were best served with an inverted bowl pattern while longer lines had the best results when applying an ascending buffer allocation pattern. Longer lines, in contrast, had the best results regarding the trade-off between TR and ABL, on average, by allocating buffer capacity evenly in one of the parallel lines while applying any other pattern in the remaining parallel line.
LINK
The Interoceanic corridor of Mexico stands as a pivotal infrastructure project poised to significantly enhance Mexico's national and regional economy. Anticipated to start the operations in 2025 under the auspice of the national government, this corridor represents a strategic counterpart to the Panama Canal, which faces capacity constraints due to climate change and environmental impacts. Positioned as a promising alternative for transporting goods from Asia to North America, this corridor will offer a new transport route, yet its real operational capacity and spatial impacts remains uncertain. In this paper, the authors undertake a preliminary, informed analysis leveraging publicly available data and other specific information about infrastructure capacities and economic environment to forecast the potential throughput of this corridor upon full operationalization and in the future. Applying simulation techniques, the authors simulate the future operations of the corridor according to different scenarios to offer insights into its potential capacity and impacts. Furthermore, the paper delves into the opportunities and challenges that are inherent in this project and gives a comprehensive analysis of its potential impact and implications.
MULTIFILE
Amsterdam Airport Schiphol has faced capacity constraints, particularly during peak periods. At the security screening checkpoint, this is due to the growing number of passengers and a shortage of security staff. To improve operating performance, there is a need to integrate newer technologies that improve passing times. This research presents a discrete event simulation (DES) model for the inclusion of a shoe scanner at the security screening checkpoint at Amsterdam Airport Schiphol. Simulation is a frequently used method to assess the influence of process changes, which, however, has not been applied for the inclusion of shoe scanners in airport security screenings yet. The simulation model can be used to assess the implementation and potential benefits of an optical shoe scanner, which is expected to lead to significant improvements in passenger throughput and a decrease in the time a passenger spends during the security screening, which could lead to improved passenger satisfaction. By leveraging DES as a tool for analysis, this study provides valuable insights for airport authorities and stakeholders aiming to optimize security screening operations and enhance passenger satisfaction.
Many lithographically created optical components, such as photonic crystals, require the creation of periodically repeated structures [1]. The optical properties depend critically on the consistency of the shape and periodicity of the repeated structure. At the same time, the structure and its period may be similar to, or substantially below that of the optical diffraction limit, making inspection with optical microscopy difficult. Inspection tools must be able to scan an entire wafer (300 mm diameter), and identify wafers that fail to meet specifications rapidly. However, high resolution, and high throughput are often difficult to achieve simultaneously, and a compromise must be made. TeraNova is developing an optical inspection tool that can rapidly image features on wafers. Their product relies on (a) knowledge of what the features should be, and (b) a detailed and accurate model of light diffraction from the wafer surface. This combination allows deviations from features to be identified by modifying the model of the surface features until the calculated diffraction pattern matches the observed pattern. This form of microscopy—known as Fourier microscopy—has the potential to be very rapid and highly accurate. However, the solver, which calculates the wafer features from the diffraction pattern, must be very rapid and precise. To achieve this, a hardware solver will be implemented. The hardware solver must be combined with mechatronic tracking of the absolute wafer position, requiring the automatic identification of fiduciary markers. Finally, the problem of computer obsolescence in instrumentation (resulting in security weaknesses) will also be addressed by combining the digital hardware and software into a system-on-a-chip (SoC) to provide a powerful, yet secure operating environment for the microscope software.
DISCO aims at fast-tracking upscaling to new generation of urban logistics and smart planning unblocking the transition to decarbonised and digital cities, delivering innovative frameworks and tools, Physical Internet (PI) inspired. To this scope, DISCO will deploy and demonstrate innovative and inclusive urban logistics and planning solutions for dynamic space re-allocation integrating urban freight at local level, within efficiently operated network-of-networks (PI) where the nodes and infrastructure are fixed and mobile based on throughput demands. Solutions are co-designed with the urban logistics community – e.g., cities, logistics service providers, retailers, real estate/public and private infrastructure owners, fleet owners, transport operators, research community, civil society - all together moving a paradigm change from sprawl to data driven, zero-emission and nearby-delivery-based models.
Aanleiding Nieuwe stoffen en producten van de farmaceutische sector en de (agro)chemie moeten uitgebreid getest worden voordat ze op de markt kunnen verschijnen. Voor die testen is nu nog een groot aantal proefdieren nodig. Dit stuit echter op een aantal bezwaren: de uitkomsten van deze studies zijn niet altijd goed vertaalbaar naar effecten bij de mens, proefdierstudies zijn duur en de ethische kant van dierproeven staat steeds vaker ter discussie. Bedrijven zijn naarstig op zoek naar alternatieve testsystemen die ervoor kunnen zorgen dat proefdierstudies met zoogdieren worden verminderd, verfijnd en vervangen (de drie V's). Doelstelling In twee eerdere RAAK-projecten is ontdekt dat nematode C. elegans een kansrijk alternatief voor dierproeven is. Het is nu aan het multidisciplinaire team van Elegant! om de potentie van deze rondworm uit te bouwen en te ontwikkelen in een gevalideerd onderzoeksmodel voor de chemische, agrochemische en farmaceutische sector. Zij gaan C. elegans inzetten als alternatief testmodel om complexe responsen te meten. De vragen die zij willen beantwoorden met het onderzoek zijn: " Hoe effectief is het gebruik van C. elegans als alternatief testsysteem in het voorspellen van mogelijke toxische effecten en farmaceutische activiteiten? " In hoeverre kan C. elegans een meerwaarde hebben met betrekking tot het bestuderen en begrijpen van het onderliggende werkingsmechanisme? Beoogde resultaten Het resultaat van het project is kennis over de effectiviteit van C. elegans als alternatief systeem voor het screenen van stoffen op veiligheid en activiteit. Tijdens het onderzoek wordt er ook nieuwe technologie ontwikkeld, waaronder: " een productieproces voor de continue aanlevering van wormen; " lab-on-chipmodule voor high-throughput microscopie; " zelfregulerende mappingtool voor verzameling en interpretatie van data.