Developmental Transformations (DvT), a practice involving interactive, improvisational play in pairs or groups, has gained international appeal as a therapeutic intervention for different populations in a variety of health, care and recreational contexts. However, a rigorous review of the benefits of DvT has not been conducted. The purpose of this study was to review extant literature for the observed benefits of DvT, identify gaps in the literature and make recommendations concerning future research including identifying possible areas for outcome measurement for preliminary studies. The authors, who each completed training in this approach, conducted a scoping review of English-language, published, peer-reviewed and grey DvT literature through 2021. From an initial 745 records retrieved through databases and a manual search, 51 publications met criteria, which, when analysed using in-vivo and pattern coding, resulted in a total of seventeen categories of observed benefits ascribed to DvT. These included six general categories – relational, emotional, social, cognitive, behavioural and physical benefits – and eleven complex categories of benefits to participants across the lifespan. In addition to benefits for participants, benefits of DvT were also observed and reported for facilitators, therapists, teachers and supervisors engaged in this practice. This review revealed inconsistencies regarding the reporting of practitioner training, frequency, format, population, intended goals, assessment measures and outcomes. Future studies with increased experimental rigor, standardized outcome measures and consistent reporting are recommended.
The seismic assessment of unreinforced masonry (URM) buildings with cavity walls is of high relevance in regions such as in Central and Northern Europe, Australia, New Zealand and China because of the characteristics of the masonry building stock. A cavity wall consists of two separate parallel walls usually connected by metal ties. Cavity walls are particularly vulnerable to earthquakes, as the out-of-plane capacity of each individual leaf is significantly smaller than the one of an equivalent solid wall. This paper presents the results of an experimental campaign conducted by the authors on metal wall tie connections and proposes a mechanical model to predict the cyclic behaviour of these connections. The model has been calibrated by us- ing the experimental results in terms of observed failure modes and force-displacement responses. Results are also presented in statistical format.
Teachers have a crucial role in bringing about the extensive social changes that are needed in the building of a sustainable future. In the EduSTA project, we focus on sustainability competences of teachers. We strengthen the European dimension of teacher education via Digital Open Badges as means of performing, acknowledging, documenting, and transferring the competencies as micro-credentials. EduSTA starts by mapping the contextual possibilities and restrictions for transformative learning on sustainability and by operationalising skills. The development of competence-based learning modules and open digital badge-driven pathways will proceed hand in hand and will be realised as learning modules in the partnering Higher Education Institutes and badge applications open for all teachers in Europe.Societal Issue: Teachers’ capabilities to act as active facilitators of change in the ecological transition and to educate citizens and workforce to meet the future challenges is key to a profound transformation in the green transition.Teachers’ sustainability competences have been researched widely, but a gap remains between research and the teachers’ practise. There is a need to operationalise sustainability competences: to describe direct links with everyday tasks, such as curriculum development, pedagogical design, and assessment. This need calls for an urgent operationalisation of educators’ sustainability competences – to support the goals with sustainability actions and to transfer this understanding to their students.Benefit to society: EduSTA builds a community, “Academy of Educators for Sustainable Future”, and creates open digital badge-driven learning pathways for teachers’ sustainability competences supported by multimodal learning modules. The aim is to achieve close cooperation with training schools to actively engage in-service teachers.Our consortium is a catalyst for leading and empowering profound change in the present and for the future to educate teachers ready to meet the challenges and act as active change agents for sustainable future. Emphasizing teachers’ essential role as a part of the green transition also adds to the attractiveness of teachers’ work.
In the Netherlands approximately 2 million inhabitants have one or more disabilities. However, just like most people they like to travel and go on holiday.In this project we have explored the customer journey of people with disabilities and their families to understand their challenges and solutions (in preparing) to travel. To get an understanding what ‘all-inclusive’ tourism would mean, this included an analysis of information needs and booking behavior; traveling by train, airplane, boat or car; organizing medical care and; the design of hotels and other accommodations. The outcomes were presented to members of ANVR and NBAV to help them design tourism and hospitality experiences or all.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.