To prepare medical students appropriately for the management of toxicological emergencies, we have developed a simulation-based medical education (SBME) training in acute clinical toxicology. Our aim is to report on the feasibility, evaluation and lessons learned of this training. Since 2019, each year approximately 180 fifth-year medical students are invited to participate in the SBME training. The training consists of an interactive lecture and two SBME stations. For each station, a team of students had to perform the primary assessment and management of an intoxicated patient. After the training, the students completed a questionnaire about their experiences and confidence in clinical toxicology. Overall, the vast majority of students agreed that the training provided a fun, interactive and stimulating way to teach about clinical toxicology. Additionally, they felt more confident regarding their skills in this area. Our pilot study shows that SBME training was well-evaluated and feasible over a longer period.
Fast charging is seen as a means to facilitate long-distance driving for electric vehicles (EVs). As a result, roll-out planning generally takes a corridor approach. However, with higher penetration of electric vehicles in urban areas, cities contemplate whether inner-city fast chargers can be an alternative for the growing amount of slow public chargers. For this purpose, more knowledge is required in motives and preferences of users and actual usage patterns of fast chargers. Similarly, with increasing charging speeds of fast chargers and different modes (taxi, car sharing) also switching to electric vehicles, the effect of charging speed should be evaluated as well as preferences amongst different user groups. This research investigates the different intentions and motivations of EV drivers at fast charging stations to see how charging behaviour at such stations differs using both data analysis from charging stations as a survey among EV drivers. Additionally, it estimates the willingness of EV drivers to use fast charging as a substitute for on-street home charging given higher charging speeds. The paper concludes that limited charging speeds imply that EV drivers prefer parking and charging over fast charging but this could change if battery developments allow higher charging speeds.
This paper analyses the effect of two new developments: electrification and ‘free floating’ car sharing and their impact on public space. Contrary to station based shared cars, free floating cars do not have dedicated parking or charging stations. They therefore park at public parking spots and utilize public charging stations. A proper network of public charging stations is therefore required in order to keep the free floating fleet up and running. As more municipalities are considering the introduction of an electric free floating car sharing system, the outline of such a public charging network becomes a critical piece of information. The objective of this paper is to create insights that can optimize charging infrastructure for free floating shared cars, by presenting three analyses. First, a business area analysis shows an insight into which business areas are of interest to such a system. Secondly, the parking and charging behaviour of the vehicles is further examined. The third option looks deeper into the locations and their success factors. Finally, the results of the analysis of the city of Amsterdam are used to model the city of The Hague and the impact that a free floating electric car sharing system might have on the city and which areas are the white spots that need to be filled in.
Het doel van het project is om inzicht te krijgen in praktische en commerciële haalbaarheid rondom de Aquabooster van het bedrijf Wabbi dat eigendom is van studentondernemer Faik Durmus. Het onderzoek waaruit de Aquabooster is ontstaan is gedaan door studenten van de opleiding Biologie en Medisch Laboratoriumonderzoek aan de Saxion Hogeschool. Daarmee borduurt dit project voort op praktijkgericht onderzoek vanuit een kennisinstelling. De Aquabooster is het enige product van het bedrijf Wabbi. De Aquabooster reinigt herbruikbare flessen (zoals de Dopper®) van consumenten met als doel de levensduur te verlengen en de afvalberg te verlagen. Hiermee hoopt Wabbi bij te dragen aan SDG12: ‘Responsible consumption and production’. De belangrijkste projectactiviteiten om het doel te realiseren omvatten: a. Het bouwen van meerdere prototypes; b. Validatie van de prototypes in relevante fieldlabs teneinde feedback uit de markt te krijgen; c. Onderzoek naar Intellectueel Eigendom; d. Schrijven van een businessplan. Deze activiteiten moeten er toe leiden dat er een beeld ontstaat over de potentie van Wabbi met haar Aquabooster. Het project duurt 9 maanden en het budget bedraagt conform begroting €40.000. De projectpartners zijn: Wabbi, Het Saxion Centrum voor Ondernemerschap (penvoerder), de lectoraten Mechatronica en Industrial Design en een partner ten aanzien van het onderzoek naar Intellectueel Eigendom (wordt nog gezocht). Aanvullend worden studenten ingezet om feedback uit de markt te krijgen en deelsystemen te ontwikkelen.
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.
The PhD research by Joris Weijdom studies the impact of collective embodied design techniques in collaborative mixed-reality environments (CMRE) in art- and engineering design practice and education. He aims to stimulate invention and innovation from an early stage of the collective design process.Joris combines theory and practice from the performing arts, human-computer interaction, and engineering to develop CMRE configurations, strategies for its creative implementation, and an embodied immersive learning pedagogy for students and professionals.This lecture was given at the Transmedia Arts seminar of the Mahindra Humanities Center of Harvard University. In this lecture, Joris Weijdom discusses critical concepts, such as embodiment, presence, and immersion, that concern mixed-reality design in the performing arts. He introduces examples from his practice and interdisciplinary projects of other artists.About the researchMultiple research areas now support the idea that embodiment is an underpinning of cognition, suggesting new discovery and learning approaches through full-body engagement with the virtual environment. Furthermore, improvisation and immediate reflection on the experience itself, common creative strategies in artist training and practice, are central when inventing something new. In this research, a new embodied design method, entitled Performative prototyping, has been developed to enable interdisciplinary collective design processes in CMRE’s and offers a vocabulary of multiple perspectives to reflect on its outcomes.Studies also find that engineering education values creativity in design processes, but often disregards the potential of full-body improvisation in generating and refining ideas. Conversely, artists lack the technical know-how to utilize mixed-reality technologies in their design process. This know-how from multiple disciplines is thus combined and explored in this research, connecting concepts and discourse from human-computer interaction and media- and performance studies.This research is a collaboration of the University of Twente, Utrecht University, and HKU University of the Arts Utrecht. This research is partly financed by the Dutch Research Council (NWO).Mixed-reality experiences merge real and virtual environments in which physical and digital spaces, objects, and actors co-exist and interact in real-time. Collaborative Mix-Reality Environments, or CMRE's, enable creative design- and learning processes through full-body interaction with spatial manifestations of mediated ideas and concepts, as live-puppeteered or automated real-time computer-generated content. It employs large-scale projection mapping techniques, motion-capture, augmented- and virtual reality technologies, and networked real-time 3D environments in various inter-connected configurations.This keynote was given at the IETM Plenary meeting in Amsterdam for more than 500 theatre and performing arts professionals. It addresses the following questions in a roller coaster ride of thought-provoking ideas and examples from the world of technology, media, and theatre:What do current developments like Mixed Reality, Transmedia, and The Internet of Things mean for telling stories and creating theatrical experiences? How do we design performances on multiple "stages" and relate to our audiences when they become co-creators?Contactjoris.weijdom@hku.nl / LinkedIn profileThis research is part of the professorship Performative Processes