Background: Training load is typically described in terms of internal and external load. Investigating the coupling of internal and external training load is relevant to many sports. Here, continuous kernel-density estimation (KDE) may be a valuable tool to capture and visualize this coupling. Aim: Using training load data in speed skating, we evaluated how well bivariate KDE plots describe the coupling of internal and external load and differentiate between specific training sessions, compared to training impulse scores or intensity distribution into training zones. Methods: On-ice training sessions of 18 young (sub)elite speed skaters were monitored for velocity and heart rate during 2 consecutive seasons. Training session types were obtained from the coach’s training scheme, including endurance, interval, tempo, and sprint sessions. Differences in training load between session types were assessed using Kruskal–Wallis or Kolmogorov–Smirnov tests for training impulse and KDE scores, respectively. Results: Training impulse scores were not different between training session types, except for extensive endurance sessions. However, all training session types differed when comparing KDEs for heart rate and velocity (both P < .001). In addition, 2D KDE plots of heart rate and velocity provide detailed insights into the (subtle differences in) coupling of internal and external training load that could not be obtained by 2D plots using training zones. Conclusion: 2D KDE plots provide a valuable tool to visualize and inform coaches on the (subtle differences in) coupling of internal and external training load for training sessions. This will help coaches design better training schemes aiming at desired training adaptations.
DOCUMENT
This scoping review aimed to systematically explore the breadth and extent of the literature regarding the relationship between contextual factors (CFs) and training load (TL) in adolescent soccer players. Further aims included comprehending potential underlying mechanisms and identifying knowledge gaps. CFs were defined as factors not part of the main training process, such as the coach–athlete relationship and educational responsibilities. PubMed, EBSCO APA PsycINFO, Web of Science, ProQuest Dissertations & Theses A&I, and SportRxiv were searched. Studies involving adolescent soccer players that investigated the CF–TL relationship and measured TL indicators were deemed eligible. Seventeen studies were included, reflecting the limited number of articles published regarding the CF–TL relationship. CFs were mostly related to match-play (N = 13) and phase of the season (N = 7). Moreover, these factors appeared to affect TL. CF related to players’ personal environment (N = 3) were underrepresented in the reviewed studies. Overall, the CF–TL relationship appears to be rarely scrutinized. A likely cause for this lack of research is the segregation of the physiological and psychological research domains, where the CF–TL relationship is often speculated upon but not measured. Therefore, a holistic approach is warranted which also investigates the effect of personal environment, such as stressful life stress events, on TL.
DOCUMENT
The prediction of the running injuries based on selfreported training data on load is difficult. At present, coaches and researchers have no validated system to predict if a runner has an increased risk of injuries. We aim to develop an algorithm to predict the increase of the risk of a runner to sustain an injury. As a first step Self-reported data on training parameters and injuries from high-level runners (duration=37 weeks, n=23, male=16, female=7) were used to identify the most predictive variables for injuries, and train a machine learning tree algorithm to predict an injury. The model was validated by splitting the data in training and a test set. The 10 most important variables were identified from 85 possible variables using the Random Forest algorithm. To predict at an earliest stage, so the runner or the coach is able to intervene, the variables were classified by time to build tree algorithms up to 7 weeks before the occurrence of an injury. By building machine learning algorithms using existing self-reported training data can enable prospective identification of high-level runners who are likely to develop an injury. Only the established prediction model needs to be verified as correct.
DOCUMENT
Abstract: BACKGROUND: Rowing is a popular sport for students in the Netherlands. First-year students have to deal with a substantial increase of training exposure during their rowing season. The aim of this study was to investigate the training characteristics and the occurrence of injuries and illnesses in the freshman rowers.
DOCUMENT
Sport injuries are most often caused by overstraining. Injuries not only have an impact on the quality of life of athletes but can also incur high costs to sports clubs, due to the players’ absence. The main goal is to have a tool, which can advise trainers to optimise training per individual athlete in order to reach peak performace and reduce injuries.
MULTIFILE
Quantifying measures of physical loading has been an essential part of performance monitoring within elite able-bodied sport, facilitated through advancing innovative technology. In wheelchair court sports (WCS) the inter-individual variability of physical impairments in the athletes increases the necessity for accurate load and performance measurements, while at the same time standard load monitoring methods (e.g. heart-rate) often fail in this group and dedicated WCS performance measurement methods are scarce. The objective of this review was to provide practitioners and researchers with an overview and recommendations to underpin the selection of suitable technologies for a variety of load and performance monitoring purposes specific to WCS. This review explored the different technologies that have been used for load and performance monitoring in WCS. During structured field testing, magnetic switch based devices, optical encoders and laser systems have all been used to monitor linear aspects of performance. However, movement in WCS is multidirectional, hence accelerations, decelerations and rotational performance and their impact on physiological responses and determination of skill level, is also of interest. Subsequently both for structured field testing as well as match-play and training, inertial measurement units mounted on wheels and frame have emerged as an accurate and practical option for quantifying linear and non-linear movements. In conclusion, each method has its place in load and performance measurement, yet inertial sensors seem most versatile and accurate. However, to add context to load and performance metrics, position-based acquisition devices such as automated image-based processing or local positioning systems are required.
DOCUMENT
PURPOSE: The aim of the present study was to investigate and compare coaches' and players' perceptions of training dose for a full competitive season. METHODS: Session Rating of Perceived Exertion (session-RPE), duration and training load (session-RPE * duration) of 33 professional soccer players (height 178,2 ± 6,6 cm; weight 70,5 ± 6,4 kg; percentage of fat 12,2 ± 1,6) from an U19 and U17 squad were compared with the planned periodization of their professional coaches. Before training, coaches filled in the session Rating of Intended Exertion (session-RIE) and duration (minutes) for each player. Players rated session-RPE and training duration after each training session. RESULTS: Players perceived their intensity and training load (2446 sessions in total) significantly harder than what was intended by their coaches (P < 0.0001). The correlations between coaches' and players' intensity (r = .24), duration (r = .49) and load (r = .41) were weak (P < 0.0001). Furthermore, for coach-intended easy and intermediate training days, players reported higher intensity and training load (P < 0.0001). For hard days as intended by the coach, players reported lower intensity, duration and training load (P < 0.0001). Finally, first year players from the U17 squad perceived training sessions harder than second year players (P < 0.0001). CONCLUSION: The results indicate that young elite soccer players perceive training harder than what was intended by the coach. These differences could lead to maladaptation to training. Monitoring of the planned and perceived training load of coaches and players may optimize performance and prevent players from overtraining.
LINK
Training-induced adaptations in muscle morphology, including their magnitude and individual variation, remain relatively unknown in elite athletes. We reported changes in rowing performance and muscle morphology during the general and competitive preparation phases in elite rowers. Nineteen female rowers completed 8 weeks of general preparation, including concurrent endurance and high-load resistance training (HLRT). Seven rowers were monitored during a subsequent 16 weeks of competitive preparation, including concurrent endurance and resistance training with additional plyometric loading (APL). Vastus lateralis muscle volume, physiological cross-sectional area (PCSA), fascicle length, and pennation angle were measured using 3D ultrasonography. Rowing ergometer power output was measured as mean power in the final 4 minutes of an incremental test. Rowing ergometer power output improved during general preparation [+2 ± 2%, effect size (ES) = 0.22, P = 0.004], while fascicle length decreased (−5 ± 8%, ES = −0.47, P = 0.020). Rowing power output further improved during competitive preparation (+5 ± 3%, ES = 0.52, P = 0.010). Here, morphological adaptations were not significant, but demonstrated large ESs for fascicle length (+13 ± 19%, ES = 0.93), medium for pennation angle (−9 ± 15%, ES = −0.71), and small for muscle volume (+8 ± 13%, ES = 0.32). Importantly, rowers showed large individual differences in their training-induced muscle adaptations. In conclusion, vastus lateralis muscles of elite female athletes are highly adaptive to specific training stimuli, and adaptations largely differ between individual athletes. Therefore, coaches are encouraged to closely monitor their athletes' individual (muscle) adaptations to better evaluate the effectiveness of their training programs and finetune them to the athlete's individual needs.
DOCUMENT
Objective. To investigate the feasibility and effects of additional preoperative high intensity strength training for patients awaiting total knee arthroplasty (TKA). Design. Clinical controlled trial. Patients. Twenty-two patients awaiting TKA. Methods. Patients were allocated to a standard training group or a group receiving standard training with additional progressive strength training for 6 weeks. Isometric knee extensor strength, voluntary activation, chair stand, 6-minute walk test (6MWT), and stair climbing were assessed before and after 6 weeks of training and 6 and 12 weeks after TKA. Results. For 3 of the 11 patients in the intensive strength group, training load had to be adjusted because of pain. For both groups combined, improvements in chair stand and 6MWT were observed before surgery, but intensive strength training was not more effective than standard training. Voluntary activation did not change before and after surgery, and postoperative recovery was not different between groups (P > 0.05). Knee extensor strength of the affected leg before surgery was significantly associated with 6-minute walk (r = 0.50) and the stair climb (r - = 0.58, P < 0.05). Conclusion. Intensive strength training was feasible for the majority of patients, but there were no indications that it is more effective than standard training to increase preoperative physical performance. This trial was registered with NTR2278.
DOCUMENT
We developed an evidence-based practice guideline to support occupational safety and health (OSH) professionals in assessing the risk due to lifting and in selecting effective preventive measures for low back pain (LBP) in the Netherlands. The guideline was developed at the request of the Dutch government by a project team of experts and OSH professionals in lifting and work-related LBP. The recommendations for risk assessment were based on the quality of instruments to assess the risk on LBP due to lifting. Recommendations for interventions were based on a systematic review of the effects of worker- and work directed interventions to reduce back load due to lifting. The quality of the evidence was rated as strong (A), moderate (B), limited (C) or based on consensus (D). Finally, eight experts and twenty-four OSH professionals commented on and evaluated the content and the feasibility of the preliminary guideline. For risk assessment we recommend loads heavier than 25 kg always to be considered a risk for LBP while loads less than 3 kg do not pose a risk. For loads between 3-25 kg, risk assessment shall be performed using the Manual handling Assessment Charts (MAC)-Tool or National Institute for Occupational Safety and Health (NIOSH) lifting equation. Effective work oriented interventions are patient lifting devices (Level A) and lifting devices for goods (Level C), optimizing working height (Level A) and reducing load mass (Level C). Ineffective work oriented preventive measures are regulations to ban lifting without proper alternatives (Level D). We do not recommend worker-oriented interventions but consider personal lift assist devices as promising (Level C). Ineffective worker-oriented preventive measures are training in lifting technique (Level A), use of back-belts (Level A) and pre-employment medical examinations (Level A). This multidisciplinary evidence-based practice guideline gives clear criteria whether an employee is at risk for LBP while lifting and provides an easy-reference for (in)effective risk reduction measures based on scientific evidence, experience, and consensus among OSH experts and practitioners.
MULTIFILE