Heritable Connective Tissue Disorders (HCTD) show an overlap in the physical features that can evolve in childhood. It is unclear to what extent children with HCTD experience burden of disease. This study aims to quantify fatigue, pain, disability and general health with standardized validated questionnaires.METHODS: This observational, multicenter study included 107 children, aged 4-18 years, with Marfan syndrome (MFS), 58%; Loeys-Dietz syndrome (LDS), 7%; Ehlers-Danlos syndromes (EDS), 8%; and hypermobile Ehlers-Danlos syndrome (hEDS), 27%. The assessments included PROMIS Fatigue Parent-Proxy and Pediatric self-report, pain and general health Visual-Analogue-Scales (VAS) and a Childhood Health Assessment Questionnaire (CHAQ).RESULTS: Compared to normative data, the total HCTD-group showed significantly higher parent-rated fatigue T-scores (M = 53 (SD = 12), p = 0.004, d = 0.3), pain VAS scores (M = 2.8 (SD = 3.1), p < 0.001, d = 1.27), general health VAS scores (M = 2.5 (SD = 1.8), p < 0.001, d = 2.04) and CHAQ disability index scores (M = 0.9 (SD = 0.7), p < 0.001, d = 1.23). HCTD-subgroups showed similar results. The most adverse sequels were reported in children with hEDS, whereas the least were reported in those with MFS. Disability showed significant relationships with fatigue (p < 0.001, rs = 0.68), pain (p < 0.001, rs = 0.64) and general health (p < 0.001, rs = 0.59).CONCLUSIONS: Compared to normative data, children and adolescents with HCTD reported increased fatigue, pain, disability and decreased general health, with most differences translating into very large-sized effects. This new knowledge calls for systematic monitoring with standardized validated questionnaires, physical assessments and tailored interventions in clinical care.
Assigning gates to flights considering physical, operational, and temporal constraints is known as the Gate Assignment Problem. This article proposes the novelty of coupling a commercial stand and gate allocation software with an off-the-grid optimization algorithm. The software provides the assignment costs, verifies constraints and restrictions of an airport, and provides an initial allocation solution. The gate assignment problem was solved using a genetic algorithm. To improve the robustness of the allocation results, delays and early arrivals are predicted using a random forest regressor, a machine learning technique and in turn they are considered by the optimization algorithm. Weather data and schedules were obtained from Zurich International Airport. Results showed that the combination of the techniques result in more efficient and robust solutions with higher degree of applicability than the one possible with the sole use of them independently.
Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the At CHR12/ 23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato ( Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated Sl CHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of Sl CHR1 show reduced growth in all developmental stages of tomato. This confirms that Sl CHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non- GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.