The European Union Water Framework Directive (WFD) encourages water managers to implement active stakeholder involvement to achieve sustainable water management. However, the WFD does not describe in detail how member states should operationalize participation. The need for local experience and local understanding of collaborative governance (co-governance) processes remains. The WaterCoG project evaluated 11 local pilot schemes. Building on the participatory, qualitative evaluation of pilot schemes from Sweden, United Kingdom, Denmark, The Netherlands, and Germany, the authors take a closer look at how co-governance can improve water governance, how water managers can make best use of tools and knowledge, and how they can improve process designs. The results reflect how social learning and successful co-governance are linked. Social learning as a shared understanding of complex ecosystem and water-management issues can be supported with active stakeholder involvement and citizen science. As such, in co-governance processes, stakeholders need technical access to data and knowledge and a shared process memory. This enables them to develop a shared understanding and facilitates bringing together competing interests and finding new solutions. Participatory tools became part of successful processes by building trust and knowledge based on commitment. However, proficient process design and facilitation make these tools more effective.
DOCUMENT
The meaningful participation of stakeholders in decision-making is now widely recognized as a crucial element of effective water resource management, particularly with regards to adapting to climate and environmental change. Social learning is increasingly being cited as an important component of engagement if meaningful participation is to be achieved. The exact definition of social learning is still a matter under debate, but is taken to be a process in which individuals experience a change in understanding that is brought about by social interaction. Social learning has been identified as particularly important in transboundary contexts, where it is necessary to reframe problems from a local to a basin-wide perspective. In this study, social learning is explored in the context of transboundary water resource management in the St. Lawrence River Basin. The overarching goal of this paper is to explore the potential role of serious games to improve social learning in the St. Lawrence River. To achieve this end, a two-pronged approach is followed: (1) Assessing whether social learning is currently occurring and identifying what the barriers to social learning are through interviews with the region's water resource managers; (2) Undertaking a literature review to understand the mechanisms through which serious games enhance social learning to understand which barriers serious games can break down. Interview questions were designed to explore the relevance of social learning in the St. Lawrence River basin context, and to identify the practices currently employed that impact on social learning. While examples of social learning that is occurring have been identified, preliminary results suggest that these examples are exceptions rather than the rule, and that on the whole, social learning is not occurring to its full potential. The literature review of serious games offers an assessment of such collaborative mechanisms in terms of design principles, modes of play, and their potential impact on social learning for transboundary watershed management. Serious game simulations provide new opportunities for multidirectional collaborative processes by bringing diverse stakeholders to the table, providing more equal access to a virtual negotiation or learning space to develop and share knowledge, integrating different knowledge domains, and providing opportunities to test and analyze the outcomes of novel management solutions. This paper concludes with a discussion of how serious games can address specific barriers and weaknesses to social learning in the transboundary watershed context of the St. Lawrence River Basin.
DOCUMENT
The diversity and intensity of human activities in the North Sea region (NSR) and other maritime regions are increasing. This necessitates transboundary coordination at the sea basin level, which is required but yet insufficiently established. Through European co-funded projects, national policymakers, stakeholders, and scientists in MSP are enabled to develop transboundary coordination (TBC) mechanisms. TBC requires, alongside other factors, a form of social and policy learning between these actors in different countries. The NorthSEE project (2016–2022) was an example of such an EU-co-funded project and was aimed at enhancing coherence in MSP processes and plans across the NSR. This article examines the project's key learning outcomes, the role of the MSP Challenge Simulation Platform in supporting these outcomes, and factors that enabled or constrained learning within the project. Data was collected during the project via document analysis, questionnaires from participatory stakeholder workshops, interviews with sixteen project participants and ten workshop participants, and observations. The study highlights that project participants have gained more insight into each other's planning systems, are able to contact each other more easily, and have initiated several follow-up initiatives. Furthermore, it shows that interactive and participatory tools, such as the MSP Challenge Simulation Platform, can contribute to individual and social learning by providing participants with instant feedback on their decisions. These learning outcomes have been influenced by various enabling and constraining conditions, including time, resources, and the differing levels of expertise and knowledge among project partners and participants. Assessing the broader societal impact remains a challenge and warrants further attention.
MULTIFILE
Transboundary conservation has an important, yet often undervalued, role in the international conservation regime. When applied to the legally ambiguous and interconnected marine environment this is magnified. The lack of clear guidance for transboundary marine conservation from the international conservation community exacerbates this problem, leaving individual initiatives to develop their own governance arrangements. Yet, well-managed transboundary marine protected areas (MPAs) have the potential to contribute significantly to global conservation aims. Conversely, in a period where there is increasing interest in marine resources and space from all sectors, the designation of MPAs can create or amplify a regional conflict. In some instances, states have used MPAs to extend rights over disputed marine resources, restrict the freedom of others and establish sovereignty over maritime space. Six case studies were taken from Europe, North Africa and the Middle East to illustrate how states have interpreted and utilized different legislative mechanisms to either come together or diverge over the governance of marine resources or maritime space. Each of the case studies illustrates how different actors have used the same legislative tools, but with different interpretations and applications, to justify their claims. It is clear that the role of science combined with a deeper engagement with stakeholders can play a critical role in tempering conflict between states. Where states are willing to cooperate, the absence of clear guidelines at the global level means that often ad hoc measures are put into place, with the international frameworks then playing catch up. Balancing different jurisdictional claims with the conservation of the marine environment, whilst considering the increasing special economic interests will become increasingly difficult. Developing a transboundary conservation tool, such as the simple conservation caveats found in the Barcelona Convention and Antarctic Convention, which allow for the establishment of intergovernmental cooperation without prejudicing any outstanding jurisdictional issue, would provide a framework for the development of individual transboundary MPAs.
DOCUMENT
Like most ocean regions today, the European and contiguous seas experience cumulative impacts from local human activities and global pressures. They are largely in poor environmental condition with deteriorating trends. Despite several success stories, European policies for marine conservation fall short of being effective. Acknowledging the challenges for marine conservation, a 4-year multi-national network, MarCons, supported collaborative marine conservation efforts to bridge the gap between science, management and policy, aiming to contribute in reversing present negative trends. By consolidating a large network of more than 100 scientists from 26 countries, and conducting a series of workshops over 4 years (2016–2020), MarCons analyzed challenges, opportunities and obstacles for advancing marine conservation in the European and contiguous seas. Here, we synthesize the major issues that emerged from this analysis and make 12 key recommendations for policy makers, marine managers, and researchers. To increase the effectiveness of marine conservation planning, we recommend (1) designing coherent networks of marine protected areas (MPAs) in the framework of marine spatial planning (MSP) and applying systematic conservation planning principles, including re-evaluation of existing management zones, (2) designing MPA networks within a broader transboundary planning framework, and (3) implementing integrated land-freshwater-sea approaches. To address inadequate or poorly informed management, we recommend (4) developing and implementing adaptive management plans in all sites of the Natura 2000 European conservation network and revising the Natura 2000 framework, (5) embedding and implementing cumulative effects assessments into a risk management process and making them operational, and (6) promoting actions to reach ‘good environmental status’ in all European waters. To account for global change in conservation planning and management, we further recommend (7) developing conservation strategies to address the impacts of global change, for example identifying climate-change refugia as high priority conservation areas, and (8) incorporating biological invasions in conservation plans and prioritizing management actions to control invasive species. Finally, to improve current practices that may compromise the effectiveness of conservation actions, we recommend (9) reinforcing the collection of high-quality open-access data, (10) improving mechanisms for public participation in MPA planning and management, (11) prioritizing conservation goals in full collaboration with stakeholders, and (12) addressing gender inequality in marine sciences and conservation.
DOCUMENT
This study investigated the urban growth dynamics of urban regions. The study area was the Marmara Region, one of the most densely populated and ecologically diverse areas in Turkey. Using CORINE land cover data for 2006, 2012, and 2018, the study utilized multiple correspondence analyses and cluster analyses, to analyze land cover changes. The resulting maps, visualized in GIS, revealed the rapid urban transformation of the regional structure, formerly comprised of four distinct areas, into a more complex structure, in which densification and sprawl occur simultaneously. Our findings demonstrated a dissonance between the spatial dynamics of the Marmara Region during the study period, and the capacity and scope of the simultaneously initiated regional policies and mega‐projects. This uncoordinated approach has endangered the region’s sustainable development. The paper, therefore, discusses the importance of land use planning and transboundary collaboration for sustainable regional development. Beyond the local case, the results contribute to critical theories in regional planning by linking theory and practice.
DOCUMENT
De publicatielijst bevat alle publicaties waar Patrick Huntjens aan bijgedragen heeft in de periode 1998 - 2021
DOCUMENT
Marine spatial planning (MSP) was developed as a place-based, integrated marine governance approach to address sectoral and fragmented management issues and has seen significant evolvement over the past two decades. MSP has rapidly become the most commonly endorsed management regime for sustainable development in the marine environment, with initiatives being implemented across multiple regions of the globe. Despite its broad and growing acceptance and use, there are several key challenges that remain, both conceptual and practical, that are negatively impacting the realization of MSP’s potential. These include institutional shortcomings, the exclusion of stakeholders, a failure to account for the human and social dimensions of marine regions, the marginalization of different types of knowledge, and the growing need to adapt to global environmental change. Although studies have examined the emergence of MSP in different geographical and institutional contexts, there is a lack of comparative analysis of how initiatives are progressing and if the foundational aims of MSP are being achieved. There is a need to analyze the degree to which MSP initiatives are responding to the environmental challenges that they have been set up to tackle and, as marine plans are setting out long-term visions for marine management, to understand if current initiatives are fit for purpose. This article responds to these concerns and reviews the evolution of MSP within 12 regional ocean areas. We utilize the term regional ocean areas to illustrate the geographical spread of MSP, with examinations conducted of the approach to MSP that specific nations within each of the 12 chosen clusters have followed. By critically assessing how MSP is progressing, it is possible to shed light on the opportunities and challenges that are facing current initiatives. This can help to reveal learning lessons that can inform future MSP systems and guide initiatives along more sustainable pathways.
DOCUMENT
The WATERMINING project aims to bring solutions to improve the circularity of water treatment and the resulting by-products of these processes. Achieving a deep understanding of the barriers potentially hindering the development of circular water solutions is crucial to design policies that enable the deployment of these techniques. To do this, the WATERMINING project organizes Communities of Practice (CoPs), where stakeholders from the WATERMINING case study projects analysed these market barriers and proposal (policy) measures to clear these.CoPs in the case studies of Lampedusa in Italy and Almería in Spain focused on sea water desalination. The case studies of Faro-Olhão in Portugal, Larnaca in Cyprus and La Llagosta in Spain have been discussed by CoP stakeholders in terms of barriers in circular urban wastewater treatment. The CoP in the Netherlands focused on circular industrial waste water treatment at the Westlake plant at Rotterdam. The barriers defined by the stakeholders in the CoPs were discussed by the WATERMINING partners at the consortium meeting in Palermo (Italy, September 2022), and presented at the WATERMINING Market and Policy workshop in Brussels (Belgium, February 2023).Addressing the three above-mentioned categories of circular water solutions, common barriers identified across all WATERMINING’s case studies are the following. First, stakeholders report a lack of incentives to implement circular solutions, as mainstream linear practices are generally cheaper.This could be addressed by de-encouraging linear techniques by making the disposal of their byproducts (such as brine) more expensive. Another solution could be to provide added value to circular solutions through the monetization of their additional products and services. Subsidies can support in lowering production costs or prices of materials recovered from sea- and wastewater treatment to level the playing field with conventionaly derived material.Another commonly mentioned barrier is the difficulty to introduce products obtained from circular water treatment in the market, both because of a lack of public acceptance and legal constraints stemming from products being regarded as waste. Information campaigns and the revision of current regulatory frameworks to allow these products entering the market would expand the revenue sources from these techniques and improve the circularity of the system. Standardising the circular water treatment technologies in the market could support this, whereby best available techniques reference documents of the EU (BREFs) could be an effective instrument, especially when tapping into an ongoing BREF writing or updating process.Across the case studies and replication studies it has been mentioned that current legislation in case study countries exclude ‘watermined’ products from food and/or other applications. Criteria for endof-waste status of ‘watermined’ products, which would determine whether a product, such as Kaumera which is produced from urban wastewater treatment, is eligible as a fertiliser in agriculture, are usually determined at the level of the EU, but Member States could interpret these more stringently (Member State-level criteria cannot be weaker than the EU-level ones). In this respect it has been recommended to enhance knowledge exchange across Member States, e.g., by creating anEU-based unit (or competencies within an existing unit) to promote cooperation among EU Member States and regional authorities concerning the production, sale and use of products recovered from wastewater treatment.Another common perception stakeholders report is the widespread conservatism in the water sector. Water treatment actors traditionally have a focus on purifying water and supplying this to the market. Generating products from waste streams is often something that market actors are less familiar with. Among other solutions, the ‘Dutch model’ has been recommended as a way to create national centres for the development of knowledge and technology for water management, which would serve as an R&D accelerator.
LINK
Since the early work on defining and analyzing resilience in domains such as engineering, ecology and psychology, the concept has gained significant traction in many fields of research and practice. It has also become a very powerful justification for various policy goals in the water sector, evident in terms like flood resilience, river resilience, and water resilience. At the same time, a substantial body of literature has developed that questions the resilience concept's systems ontology, natural science roots and alleged conservatism, and criticizes resilience thinking for not addressing power issues. In this study, we review these critiques with the aim to develop a framework for power-sensitive resilience analysis. We build on the three faces of power to conceptualize the power to define resilience. We structure our discussion of the relevant literature into five questions that need to be reflected upon when applying the resilience concept to social–hydrological systems. These questions address: (a) resilience of what, (b) resilience at what scale, (c) resilience to what, (d) resilience for what purpose, and (e) resilience for whom; and the implications of the political choices involved in defining these parameters for resilience building or analysis. Explicitly considering these questions enables making political choices explicit in order to support negotiation or contestation on how resilience is defined and used.
DOCUMENT