Climate change and changing land use challenge the livability and flood safety of Dutch cities. One option cities have to become more climate-proof is to increase infiltration of stormwater into soil through permeable pavement and thus reduce discharge of stormwater into sewer systems. To analyze the market receptivity for permeable pavements in the Netherlands, this article focuses on the perception of end-users towards key transition factors in the infrastructure transformation processes. Market receptivity was studied on two levels: (1) on the system level, by analyzing 20 key factors in the Dutch urban water sector that enable wider application of permeable pavements; and (2) on the technology level, by analyzing 12 key factors that explain why decision makers select permeable pavements or not. Results show that trust between cooperating partners was perceived as the system level key factor that needs to be improved most to facilitate the wider uptake of permeable pavements. Additionally, the association of end-users with permeable pavement, particularly their willingness to apply these technologies and their understanding of what kinds of benefits these technologies could bring, was regarded the most important receptivity attribute. On the technology level, the reliability of permeable pavement was regarded as the most important end-user consideration for selecting this technology.
DOCUMENT
Climate change and changing land use challenge the livability and flood safety of Dutch cities. One option cities have to become more climate-proof is to increase infiltration of stormwater into soil through permeable pavement and thus reduce discharge of stormwater into sewer systems. To analyze the market receptivity for permeable pavements in the Netherlands, this article focuses on the perception of end-users towards key transition factors in the infrastructure transformation processes. Market receptivity was studied on two levels: (1) on the system level, by analyzing 20 key factors in the Dutch urban water sector that enable wider application of permeable pavements; and (2) on the technology level, by analyzing 12 key factors that explain why decision makers select permeable pavements or not. Results show that trust between cooperating partners was perceived as the system level key factor that needs to be improved most to facilitate the wider uptake of permeable pavements. Additionally, the association of end-users with permeable pavement, particularly their willingness to apply these technologies and their understanding of what kinds of benefits these technologies could bring, was regarded the most important receptivity attribute. On the technology level, the reliability of permeable pavement was regarded as the most important end-user consideration for selecting this technology
DOCUMENT
In the era of Industry 4.0, data has become a critical driver of innovation and competitiveness in manufacturing. The up-take of technologies such as IoT, AI, and robotics has led to an unprecedented explosion of data, offering transformative opportunities for process optimization, product quality enhancement, predictive maintenance, and customisation. However, realizing these benefits requires effective data collection, storage, and processing, which necessitates robust and adaptable IT infrastructures. This white paper provides a comprehensive overview of four popular data infrastructure paradigms: data lakes, data fabrics, data meshes, and data spaces. Each of these paradigms have their unique focus points and application domains. Metadata serves as a crucial component, enhancing the findability, accessibility, interoperability, and reusability of data. The paper also explores critical building blocks of modern data infrastructures within manufacturing environments, such as OPC UA, brokers, and data catalogues, highlighting their role in enabling effective data sharing, management, and governance.
MULTIFILE
Contribution to the conference: International Conference on New Pathways for Community Energy and Storage, 6-7 June 2019ABSTRACTThe community renewable energy is often seen as the way to address the societal challenge of energy transition. Many scholars foresee a key role for community energy in accelerating of the energy transition from fossil to renewable energy sources. For example, some authors investigated the transformative role of community renewable energy in the energy transition process (Seyfang and Smith, 2007; Seyfang and Haxeltine 2012; Seyfang et al. 2013; Seyfang et al. 2014; Smith et al. 2017; Martiskainen, 2017; Ruggiero et al. 2018; Hasanov and Zuidema, 2018; de Boer et al. 2018). Recognising the importance of community energy many scholars studied different internal and external conditions that contribute or hinder the success of local renewable energy initiatives (Walker et al. 2007; Bomberg and McEwen, 2012; Seyfang et al. 2013; Wirth, 2014; Hasanov and Zuidema, 2018; Ruggiero et al. 2018). One of such conditions contributing to the success of community energy initiatives is the capacity to adopt and utilize new technologies, for example, in the area of energy storage, which would increase flexibility and resilience of the communal energy supply systems.However, as noted by Ruggiero et al. (2018), the scholarship remains unclear on “how a very diverse and relatively small sector such as community energy could scale up and promote a change in the dominant way of energy production”. What is then the real transformative power of local renewable energy initiatives and whether community energy can offer an alternative to the existing energy system? This paper aims to answer these questions by confronting the critical review of theory with the recent practice of community energy in the Netherlands to build and scale up independent and self-sustaining renewable energy supply structures on the local and national scale and drafting perspectives on the possible role of community energy in the new energy system.
DOCUMENT
This open access book states that the endemic societal faultlines of our times are deeply intertwined and that they confront us with challenges affecting the security and sustainability of our societies. It states that new ways of inhabiting and cultivating our planet are needed to keep it healthy for future generations. This requires a fundamental shift from the current anthropocentric and economic growth-oriented social contract to a more ecocentric and regenerative natural social contract. The author posits that in a natural social contract, society cannot rely on the market or state alone for solutions to grand societal challenges, nor leave them to individual responsibility. Rather, these problems need to be solved through transformative social-ecological innovation (TSEI), which involves systemic changes that affect sustainability, health and justice. The TSEI framework presented in this book helps to diagnose and advance innovation and change across sectors and disciplines, and at different levels of governance. It identifies intervention points and helps formulate sustainable solutions for policymakers, administrators, concerned citizens and professionals in moving towards a more just and equitable society.
MULTIFILE
The ‘Grand Challenges’ of our times, like climate change, resource depletion, global inequity, and the destruction of wildlife and biodiversity can only be addressed by innovating cities. Despite the options of tele-working, tele-trading and tele-amusing, that allow people to participate in ever more activities, wherever they are, people are resettling in cities at an unprecedented speed. The forecasted ‘rurification’ of society did not occur. Technological development has drained rural society from its main source of income, agriculture, as only a marginal fraction of the labour force is employed in agriculture in the rich parts of the world. Moreover, technological innovation created new jobs in the IT and service sectors in cities. Cities are potentially far more resource efficient than rural areas. In a city transport distances are shorter, infrastructures can be applied to provide for essential services in a more efficient way and symbiosis might be developed between various infrastructures. However, in practice, urban infrastructures are not more efficient than rural infrastructures. This paper explores the reasons why. It digs into the reasons why the symbiotic options that are available in cities are not (sufficiently) utilised. The main reason for this is not of an economic nature: Infrastructure organisations are run by experts who are part of a strong paradigmatic community. Dependence on other organisations is regarded as limiting the infrastructure organisation’s freedom of action to achieve its own goals. Expert cultures are transferred in education, professional associations, and institutional arrangements. By 3 concrete examples of urban systems, the paper will analyse how various paradigms of experts co-evolved with evolving systems. The paper reflects on recent studies that identified professional education as the initiation into such expert paradigms. It will thereby relate lack of urban innovation to the monodisciplinary education of experts and the strong institutionalised character of expertise. https://doi.org/10.1007/978-3-319-63007-6_43 LinkedIn: https://www.linkedin.com/in/karelmulder/
MULTIFILE
New Dutch agrifood business models are emerging in response to economic, social and ecological pressures: new players arrive, new logistical pathways come to the fore and innovative consumer and farmer relationships – food coöperatives – are forged. How do new business models relate to reconfiguring the Dutch agrifood system? Our research combines future exploration (backcasting) and analysis of new business models. We developed three agrifood transition scenarios with various groups of stakeholders. For each scenario, we then analysed a specific, representative business model to explore the different roles of business models in agrifood transition. Business models in the “Added value in and with the countryside” already exist and occupy a niche in the market. However, a breakthrough of these business models require large-scale institutional and behavioural change. Business models in the “New products, specific markets” exist but are rare. They usually concern high-value specialist products that could result in widespread market change, but might require little institutional change. The “Sustainable production methods” most resembles the current system. Some associated business models become successful, but they have difficulty distinguishing themselves from conventional produce, which raises questions about whether business models are able to drive a transition in this direction. Thus, our results lend credence to the hypothesis that different transition pathways offer specific potential for and requirements of new business models.
DOCUMENT
This article addresses European energy policy through conventional and transformative sustainability approaches. The reader is guided towards an understanding of different renewable energy options that are available on the policy making table and how the policy choices have been shaped. In arguing that so far, European energy policy has been guided by conventional sustainability framework that focuses on eco-efficiency and ‘energy mix’, this article proposes greater reliance on circular economy (CE) and Cradle to Cradle (C2C) frameworks. Exploring the current European reliance on biofuels as a source of renewable energy, this article will provide recommendations for transition to transformative energy choices. http://dx.doi.org/10.13135/2384-8677/2331 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Adaptive governance describes the purposeful collective actions to resist, adapt, or transform when faced with shocks. As governments are reluctant to intervene in informal settlements, community based organisations (CBOs) self-organize and take he lead. This study explores under what conditions CBOs in Mathare informal settlement, Nairobi initiate and sustain resilience activities during Covid-19. Study findings show that CBOs engage in multiple resilience activities, varying from maladaptive and unsustainable to adaptive, and transformative. Two conditions enable CBOs to initiate resilience activities: bonding within the community and coordination with other actors. To sustain these activities over 2.5 years of Covid-19, CBOs also require leadership, resources, organisational capacity, and network capacity. The same conditions appear to enable CBOs to engage in transformative activities. How-ever, CBOs cannot transform urban systems on their own. An additional condition, not met in Mathare, is that governments, NGOs, and donor agencies facilitate, support, and build community capacities. This is the peer reviewed version of the following article: Adaptive governance by community-based organisations: Community resilience initiatives during Covid‐19 in Mathare, Nairobi. which has been published in final form at doi/10.1002/sd.2682. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions
DOCUMENT