Times change and we change with them. Our world is changing rapidly and radically. Education institutions need to prepare and support students in becoming knowledgeable, concerned and internationally competent world citizens. The Hague University of Applied Sciences (THUAS) has made World Citizenship and Internationalization their institutional focal points. The Research Group International Cooperation generates and disseminates knowledge that supports those policies. So this volume gives an overview of some of the work done in the Research Group International Cooperation. More is to be found on our website: www.thehagueuniversity.com/research/overview-research-groups/international-cooperation/ about-the-research-group.
What is this publication about?In this publication on ‘New urban economies’, we search for answers and insights to a key question: how can cities foster economic development and develop ‘new urban economies’. And, importantly, how can they do that:◗ in concertation with different urban stakeholders, ◗ responding adequately to key challenges and developments beyond their control, ◗ building on the cities’ own identity, industries and competences, ◗ in a sustainable way, ◗ and without compromising weaker groups.
Background Understanding the kinematic characteristics of relapse clubfoot compared to successfully treated clubfoot could aid early identification of a relapse and improve treatment planning. The usage of a multi segment foot model is essential in order to grasp the full complexity of the multi-planar and multi-joint deformity of the clubfoot. Research question The purpose of this study was to identify differences in foot kinematics, using a multi-segment foot model, during gait between patients with Ponseti treated clubfoot with and without a relapse and age-matched healthy controls. Methods A cross-sectional study was carried out including 11 patients with relapse clubfoot, 11 patients with clubfoot and 15 controls. Gait analysis was performed using an extended Helen Hayes model combined with the Oxford Foot Model. Statistical analysis included statistical parametric mapping and discrete analysis of kinematic gait parameters of the pelvis, hip, knee, ankle, hindfoot and forefoot in the sagittal, frontal and transversal plane. Results The relapse group showed significantly increased forefoot adduction in relation with the hindfoot and the tibia. Furthermore, this group showed increased forefoot supination in relation with the tibia during stance, whereas during swing increased forefoot supination in relation with the hindfoot was found in patients with relapse clubfoot compared with non-relapse clubfoot. Significance Forefoot adduction and forefoot supination could be kinematic indicators of relapse clubfoot, which might be useful in early identification of a relapse clubfoot. Subsequently, this could aid the optimization of clinical decision making and treatment planning for children with clubfoot.
MULTIFILE