Samenvattend overzicht van de inzichten uit de literatuur tot 1996 over de maatschappelijke betekenissen van sport op het gebied van gezondheid, sociale binding en economie.
As the two prime examples of sport light, running and walking have become very popular sports activities in the past decades. There are references in the literature of similarities between both sports, however these parallels have never been studied. In addition, the current digitalisation of society can have important influences on the further diversification of profiles. Data of a large-scale population survey among runners and walkers (n = 4913) in Flanders (Belgium) were used to study their sociodemographic, sports related and attitudinal characteristics, and wearable usage. The results showed that walkers are more often female, older, lower educated, and less often use wearables. To predict wearable usage, sports-related and attitudinal characteristics are important among runners but not among walkers. Motivational variables to use wearables are important to predict wearable usage among both runners and walkers. Additionally, whether or not the runner or walker registers the heart rate is the most important predictor. The present study highlights similarities and differences between runners and walkers. By adding attitudinal characteristics and including walkers this article provides new insights to the literature, which can be used by policymakers and professionals in the field of sport, exercise and health, and technology developers to shape their services accordingly.
In sports, inertial measurement units are often used to measure the orientation of human body segments. A Madgwick (MW) filter can be used to obtain accurate inertial measurement unit (IMU) orientation estimates. This filter combines two different orientation estimates by applying a correction of the (1) gyroscope-based estimate in the direction of the (2) earth frame-based estimate. However, in sports situations that are characterized by relatively large linear accelerations and/or close magnetic sources, such as wheelchair sports, obtaining accurate IMU orientation estimates is challenging. In these situations, applying the MW filter in the regular way, i.e., with the same magnitude of correction at all time frames, may lead to estimation errors. Therefore, in this study, the MW filter was extended with machine learning to distinguish instances in which a small correction magnitude is beneficial from instances in which a large correction magnitude is beneficial, to eventually arrive at accurate body segment orientations in IMU-challenging sports situations. A machine learning algorithm was trained to make this distinction based on raw IMU data. Experiments on wheelchair sports were performed to assess the validity of the extended MW filter, and to compare the extended MW filter with the original MW filter based on comparisons with a motion capture-based reference system. Results indicate that the extended MW filter performs better than the original MW filter in assessing instantaneous trunk inclination (7.6 vs. 11.7◦ root-mean-squared error, RMSE), especially during the dynamic, IMU-challenging situations with moving athlete and wheelchair. Improvements of up to 45% RMSE were obtained for the extended MW filter compared with the original MW filter. To conclude, the machine learning-based extended MW filter has an acceptable accuracy and performs better than the original MW filter for the assessment of body segment orientation in IMU-challenging sports situations.