In many cities, pilot projects are set up to test new technologies that help to address urban sustainability issues, improve the effectiveness of urban services, and enhance the quality of life of citizens. These projects, often labelled as “smart city” projects, are typically supported by municipalities, funded by subsidies, and run in partnerships. Many of the projects fade out after the pilot stage, and fail to generate scalable solutions that contribute to sustainable urban development. The lack of scaling is widely perceived as a major problem. In this paper, we analyze processes of upscaling, focusing on smart city pilot projects in which several partners—with different missions, agendas, and incentives—join up. We start with a literature review, in which we identify three types of upscaling: roll-out, expansion, and replication, each with its own dynamics and degree of context sensitivity. The typology is further specified in relation to several conditions and requirements that can impact upscaling processes, and illustrated by a descriptive analysis of three smart city pilot projects developed in Amsterdam. The paper ends with conclusions and recommendations on pilot projects and partnership governance, and adds new perspectives on the debate regarding upscaling.
We studied 12 smart city projects in Amsterdam, and –among other things- analysed their upscaling potential and dynamics. Here are some of our findings:First, upscaling comes in various forms: rollout, expansion and replication. In roll-out, a technology or solution that was successfully tested and developed in the pilot project is commercialised/brought to the market (market roll-out), widely applied in an organisation (organisational roll-out), or rolled out across the city (city roll-out). Possibilities for rollout largely emerge from living-lab projects (such as Climate street and WeGo), where companies can test beta versions of new products/solutions. Expansion is the second type of upscaling. Here, the smart city pilot project is expanded by a) adding partners, b) extending the geographical area covered by the solution, or c) adding functionality. This type of upscaling applies to platform projects, for example smart cards for tourists, where the value of the solution grows with the number of participating organisations. Replication is the third and most problematic type of upscaling. Here, the solution that was developed in the pilot project is replicated elsewhere (another organisation, another part of the city, or another city). Replication can be done by the original pilot partnership but also by others, and the replication can be exact or by proxy. We found that the replication potential of projects is often limited because the project’s success is highly context-sensitive. Replication can also be complex because new contexts might often require the establishment of new partnerships. Possibilities for replication exist, though, at the level of working methods, specific technologies or tools, but variations among contexts should be taken into consideration. Second, upscaling should be considered from the start of the pilot project and not solely at the end. Ask the following questions: What kind of upscaling is envisioned? What parts of the project will have potential for upscaling, and what partners do we need to scale up the project as desired? Third, the scale-up stage is quite different from the pilot stage: it requires different people, competencies, organisational setups and funding mechanisms. Thus, pilot project must be well connected to the parent organisations, else it becomes a “sandbox” that will stay a sandbox. Finally, “scaling” is not a holy grail. There is nothing wrong when pilot projects fail, as long as the lessons are lessons learned for new projects, and shared with others. Cities should do more to facilitate learning between their smart city projects, to learn and innovate faster.
The potential of technological innovation to address urban sustainability has been widely acknowledged over the last decade. Across cities globally, local governments have engaged in partnership arrangements with the private sector to initiate pilot projects for urban innovation, typically co-funded by innovation subsidies. A recurring challenge however is how to scale up successful projects and generate more impact. Drawing on the business and management literature, we introduce the concept of organizational ambidexterity to provide a novel theoretical perspective on sustainable urban innovations. We examine how to align exploration (i.e., test and experiment with digital technologies, products, platforms, and services) with exploitation (i.e., reaping the financial benefits from digital technologies by bringing products, platforms, and services to the market), rooted in the literature on smart cities. We conclude that the concept of ambidexterity, as elaborated in the business and management literature and practiced by firms, can be translated to the city policy domain, provided that upscaling or exploitation in a smart city context also includes the translation of insights from urban experiments, successful or not, into new routines, regulations, protocols, and stakeholder/citizen engagement methods.
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.
DISCO aims at fast-tracking upscaling to new generation of urban logistics and smart planning unblocking the transition to decarbonised and digital cities, delivering innovative frameworks and tools, Physical Internet (PI) inspired. To this scope, DISCO will deploy and demonstrate innovative and inclusive urban logistics and planning solutions for dynamic space re-allocation integrating urban freight at local level, within efficiently operated network-of-networks (PI) where the nodes and infrastructure are fixed and mobile based on throughput demands. Solutions are co-designed with the urban logistics community – e.g., cities, logistics service providers, retailers, real estate/public and private infrastructure owners, fleet owners, transport operators, research community, civil society - all together moving a paradigm change from sprawl to data driven, zero-emission and nearby-delivery-based models.
The Netherlands is facing great challenges to achieve (inter)national climate mitigation objectives in limited time, budget and space. Drastic innovative measures such as floating solar parks are high on political agendas and are entering our water systems . The clear advantages of floating solar (multifunctional use of space) led to a fast deployment of renewable energy sources without extensive research to adequately evaluate the impacts on our environment. Acquisition of research data with holistic monitoring methods are urgently needed in order to prevent disinvestments. In this proposal ten SMEs with different expertise and technologies are joining efforts with researchers and four public parties (and 12 indirectly involved) to answer the research question “Which monitoring technologies and intelligent data interpretation techniques are required to be able to conduct comprehensive, efficient and cost-effective monitoring of the impacts of floating solar panels in their surroundings?" The outputs after a two-year project will play a significant and indispensable role in making Green Energy Resources Greener. Specific output includes a detailed inventory of existing projects, monitoring method for collection/analysis of datasets (parameters/footage on climate, water quality, ecology) on the effects of floating solar panels on the environment using heterogeneous unmanned robots, workshops with public & private partners and stakeholders, scientific and technical papers and update of national guidelines for optimizing the relationship between solar panels and the surrounding environment. Project results have a global interest and the consortium partners aim at upscaling for the international market. This project will enrich the involved partners with their practical knowledge, and SMEs will be equipped with the new technologies to be at the forefront and benefit from the increasing floating solar market opportunities. This project will also make a significant contribution to various educational curricula in universities of applied sciences.