Limited data is available on the size of urban goods movement and its impact on numerous aspects with respect to livability such as emissions and spatial impact. The latter becomes more important in densifying cities. This makes it challenging to implement effective measures that aim to reduce the negative impact of urban good movement and to monitor their impact. Furthermore, urban goods movement is diverse and because of this a tailored approach is required to take effective measures. Minimizing the negative impact of a heavy truck in construction logistics requires a different approach than a parcel delivery van. Partly due to a lack of accurate data, this diversity is often not considered when taking measures. This study describes an approach how to use available data on urban traffic, and how to enrich these with other sources, which is used to gain insight into the decomposition (number of trips and kilometers per segment and vehicle type). The usefulness of having this insight is shown for different applications by two case studies: one to estimate the effect of a zero-emission zone in the city of Utrecht and another to estimate the logistics requirements in a car-free area development.
MULTIFILE
What happens at the urban edge and the SURF aspiration to influence it? Projects in the urban fringe Urban fringe governance Integrated policy guidelines and approaches towards urban fringe planning and management The future management of the urban fringe
MULTIFILE
The adaptation of urbanised areas to climate change is currently one of the key challenges in the domain of urban policy. The diversity of environmental determinants requires the formulation of individual plans dedicated to the most significant local issues. This article serves as a methodic proposition for the stage of retrieving data (with the PESTEL and the Delphi method), systemic diagnosis (evaluation of risk and susceptibility), prognosis (goal trees, goal intensity map) and the formulation of urban adaptation plans. The suggested solution complies with the Polish guidelines for establishing adaptation plans. The proposed methodological approach guarantees the participation of various groups of stakeholders in the process of working on urban adaptation plans, which is in accordance with the current tendencies to strengthen the role of public participation in spatial management. https://doi.org/10.12911/22998993/81658
MULTIFILE
Climate change is increasing the challenges for water management worldwide. Extreme weather conditions, such as droughts and heavy rainfall, are increasingly limiting the availability of water, especially for agriculture. Nature-Based Solutions (NBS) offer potential solutions. They help to collect and infiltrate rainwater and thus play an important role in climate adaptation.Green infrastructure, such as rain gardens (sunken plant beds) and wadis (sunken grass fields for temporary storage of rainwater), help to restore the urban water balance. They reduce rainwater runoff, stabilize groundwater levels and solve problems with soil moisture and temperature. Despite these advantages, there is still much ignorance in practice about the possibilities of NBS. To remedy this, freely accessible knowledge modules are being developed that can help governments and future employees to better understand the application of these solutions. This research, called GINA (Green Infrastructure in Urban Areas), aims to create more sustainable and climate-resilient cities by developing and sharing knowledge about NBS, and supports local governments and students in effectively deploying these green infrastructures.
The Netherlands must build one million homes and retrofit eight million buildings by 2030, while halving CO₂ emissions and achieving a circular economy by 2050. This demands a shift from high-carbon materials like concrete—responsible for 8% of global CO₂ emissions—and imported timber, which inflates supply-chain emissions. Mycelium offers a regenerative, biodegradable alternative with carbon-sequestration potential and minimal energy input. Though typically used for insulation, it shows structural promise—achieving compressive strengths of 5.7 MPa and thermal conductivities of 0.03–0.05 W/(m·K). Hemp and other lignocellulosic agricultural byproducts are commonly used as substrates for mycelium composites due to their fibrous structure and availability. However, hemp (for e.g.) requires 300–500 mm of water per cycle and centralized processing, limiting its circularity in urban or resource-scarce areas. Aligned with the CLICKNL Design Power Agenda, this project explores material-driven design innovation through a load-bearing mycelium-based architectural product system, advancing circular, locally embedded construction. To reduce environmental impact, we will develop composites using regional bio-waste—viz. alienated vegetation, food waste, agriculture and port byproducts—eliminating the need for water-intensive hemp cultivation. Edible fungi like Pleurotus ostreatus (oyster mushroom) will enable dual-function systems that yield food and building material. Design is key for moving beyond a singular block to a full product system: a cluster of modular units emphasizing geometry, interconnectivity, and compatibility with other building layers. Aesthetic variation (dimension, color, texture) supports adaptable, expressive architecture. We will further assess lifecycle performance, end-of-(service)-life scenarios, and on-site fabrication potential. A 1:1 prototype at The Green Village will serve as a demonstrator, accelerating stakeholder engagement and upscaling. By contributing to the KIA mission on Social Desirability, we aim to shift paradigms—reimagining how we build, live, grow, and connect through circular architecture.