Urban ageing is an emerging domain that deals with the population of older people living in cities. The ageing of society is a positive yet challenging phenomenon, as population ageing and urbanisation are the culmination of successful human development. One could argue whether the city environment is an ideal place for people to grow old and live at an old age compared to rural areas. This viewpoint article explores and describes the challenges that are encountered when making cities age-friendly in Europe. Such challenges include the creation of inclusive neighbourhoods and the implementation of technology for ageing-in-place. Examples from projects in two age-friendly cities in The Netherlands (The Hague) and Poland (Cracow) are shown to illustrate the potential of making cities more tuned to the needs of older people and identify important challenges for the next couple of years. Overall, the global ageing of urban populations calls for more age-friendly approaches to be implemented in our cities. It is a challenge to prepare for these developments in such a way that both current and future generations of older people can benefit from age-friendly strategies. CC-BY Original article: https://doi.org/10.3390/ijerph15112473 https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat
MULTIFILE
Different unexpected combinations between industry, local government, private participants, educational institutes and artists resulted past year in challenging opportunities for transitions in urban and rural areas. The power of art with the perspective of the artist approaching challenges evokes a chain of thoughts and (cascading) events, affecting systems. This results not only in innovative sustainable social &industrial products but also in change of systems. Panarchy is the paradigm of transition and change (Holling). Panarchy is interaction of countless interconnected and nested complex adaptive systems. Panarchy is the paradigm where small actions can have major effects for good or worse. It is to expect the unexpected. Panarchy holds the promise of positively changing the anthropocene. By being prepared we can anticipate upon unexpected emerging phenomena which can be used as leverage for creating change. SDG-labs are the environment where we can experiment and create new resilient concepts for adaptation to the antropocene. SDG-Labs have two aspects, the first is creation of concepts for change within the lab-setting, its content; the second is the process of organisation of the lab within its environmental and societal context. The Lab itself can be regarded as a complex adaptive system while the organisation of the SDG-Lab is within panarchy, acting on multiple levels and on different scales. Both faces, content and context, of the SDG lab have their own emerging properties. For facilitation of the SDG-lab we organised workshops where creative methods based upon TRIZ ("Theory of inventive problem solving") and CPS (Creative Problem Solving) were applied. TRIZ makes use of pre-established thinking patterns and proven abstract solutions to sets of abstract problems. TRIZ provides a toolbox for solving complex (wicked) problems. TRIZ uses the heuristics of intrinsic technological and societal evolution once a concept emerges. CPS is used for application of the TRIZ toolbox, by making concrete problems abstract and abstract solutions, concrete. TRIZ and CPS makes use of analytical and design thinking. Results of these workshops are emerged pre-concepts which have the potential to create change. Contextual settings of the SDG-lab determine its rate of success. Many good ideas perish in the “valley of death”, before they can realise their full potential. The contextual setting determines acceptance and hence increases probability of idea realisation. The action of organising SDG-labs generates curiosity, enthusiasm, resistance and other emotions with people and organisations. This lead to disturbances in panarchy, which is rendered in emerging opportunities that can be seized by imaginative people. Sarasvathy and Simon (2000) coined for this approach the concept of effectuation as an entrepreneurial principle for seizing opportunities which emerge from entrepreneurial actions in contrast to causation where managerial thinking obscures seeing opportunities. Effectuation is actor dependent where given specific means, choice of effect is driven by characteristics of the actor and his or her ability to discover and use contingencies. This approach is also recognised in innovation theory where the concept of “exaptation” is explored. Exaptation is the attribution of a new functionality to an existing artefact (or organization, scientific achievement, or
This article will explore the Cradle to Cradle (C2C) framework for urban environments, focusing on the perception, utilization and maintenance of parks. The case study explores the perception of urban flora and the value of greenery in everyday life in The Netherlands. The reflection section addresses the difference between conventional and C2C approaches to greenery on the one hand and current green management policies and public opinion on the other hand. The author reflects on how urban planning policies can be better geared towards public awareness of C2C, and towards the implementation of ecologically benign management of urban flora. It is proposed that an implementation of urban green management consistent with C2C is feasible and desirable. It is feasible given the favorable shifts in public opinion in relation to urban sustainability, and it is desirable due to the basic cost-benefit analysis and increased need for urban sustainability. This is a post-peer-review, pre-copyedit version of an article published in Urban Ecosystems. The final authenticated version is available online at: https://doi.org/10.1007/s11252-015-0468-2 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Huntington’s disease (HD) and various spinocerebellar ataxias (SCA) are autosomal dominantly inherited neurodegenerative disorders caused by a CAG repeat expansion in the disease-related gene1. The impact of HD and SCA on families and individuals is enormous and far reaching, as patients typically display first symptoms during midlife. HD is characterized by unwanted choreatic movements, behavioral and psychiatric disturbances and dementia. SCAs are mainly characterized by ataxia but also other symptoms including cognitive deficits, similarly affecting quality of life and leading to disability. These problems worsen as the disease progresses and affected individuals are no longer able to work, drive, or care for themselves. It places an enormous burden on their family and caregivers, and patients will require intensive nursing home care when disease progresses, and lifespan is reduced. Although the clinical and pathological phenotypes are distinct for each CAG repeat expansion disorder, it is thought that similar molecular mechanisms underlie the effect of expanded CAG repeats in different genes. The predicted Age of Onset (AO) for both HD, SCA1 and SCA3 (and 5 other CAG-repeat diseases) is based on the polyQ expansion, but the CAG/polyQ determines the AO only for 50% (see figure below). A large variety on AO is observed, especially for the most common range between 40 and 50 repeats11,12. Large differences in onset, especially in the range 40-50 CAGs not only imply that current individual predictions for AO are imprecise (affecting important life decisions that patients need to make and also hampering assessment of potential onset-delaying intervention) but also do offer optimism that (patient-related) factors exist that can delay the onset of disease.To address both items, we need to generate a better model, based on patient-derived cells that generates parameters that not only mirror the CAG-repeat length dependency of these diseases, but that also better predicts inter-patient variations in disease susceptibility and effectiveness of interventions. Hereto, we will use a staggered project design as explained in 5.1, in which we first will determine which cellular and molecular determinants (referred to as landscapes) in isogenic iPSC models are associated with increased CAG repeat lengths using deep-learning algorithms (DLA) (WP1). Hereto, we will use a well characterized control cell line in which we modify the CAG repeat length in the endogenous ataxin-1, Ataxin-3 and Huntingtin gene from wildtype Q repeats to intermediate to adult onset and juvenile polyQ repeats. We will next expand the model with cells from the 3 (SCA1, SCA3, and HD) existing and new cohorts of early-onset, adult-onset and late-onset/intermediate repeat patients for which, besides accurate AO information, also clinical parameters (MRI scans, liquor markers etc) will be (made) available. This will be used for validation and to fine-tune the molecular landscapes (again using DLA) towards the best prediction of individual patient related clinical markers and AO (WP3). The same models and (most relevant) landscapes will also be used for evaluations of novel mutant protein lowering strategies as will emerge from WP4.This overall development process of landscape prediction is an iterative process that involves (a) data processing (WP5) (b) unsupervised data exploration and dimensionality reduction to find patterns in data and create “labels” for similarity and (c) development of data supervised Deep Learning (DL) models for landscape prediction based on the labels from previous step. Each iteration starts with data that is generated and deployed according to FAIR principles, and the developed deep learning system will be instrumental to connect these WPs. Insights in algorithm sensitivity from the predictive models will form the basis for discussion with field experts on the distinction and phenotypic consequences. While full development of accurate diagnostics might go beyond the timespan of the 5 year project, ideally our final landscapes can be used for new genetic counselling: when somebody is positive for the gene, can we use his/her cells, feed it into the generated cell-based model and better predict the AO and severity? While this will answer questions from clinicians and patient communities, it will also generate new ones, which is why we will study the ethical implications of such improved diagnostics in advance (WP6).
Dit project heeft tot doel het ontwerp en de exploitatie van lokale energiesystemen te verbeteren voor buurten met een hoge zelfvoorziening en een hoge betrokkenheid van alle betrokken belanghebbenden. In dit project wordt een integrale aanpak toegepast door zowel technische als sociale aspecten mee te nemen.
The capacity on the Northern ring road in Breda is approaching its limits. Due to planned spatial developments the ring road might even be under further pressure. Therefore the municipality of Breda is working on an action plan to deal with this task. This requires insight into the functioning of the Northern ring road, which has been achieved by combining the following data sources: • Meetweken Breda 1st edition (GPS)• Meetweken Breda 2nd edition (GPS)• OViN• License plate cameras (NRW)• Counting data (NRW)• Bluetooth data (NRW)• Weather data (KNMI)The results show that in comparison with other strongly urbanized cities, Breda is more oriented towards the car and less use is made of public transport and the bicycle. Particularly on short distances there is still potential to further increase bicycle usage. In depth results can be found in the presentation, including information about: peak hours, the number of trips per person per day, the percentage of multimodal trips and the effect of rain on route choice. By combining the insights from the different forms of data, additional insights and an overarching mobility picture emerge. In other words, the overall picture is more than the sum of the parts.