Small urban water bodies, like ponds or canals, are often assumed to cool their surroundings during hot periods, when water bodies remain cooler than air during daytime. However, during the night they may be warmer. Sufficient fetch is required for thermal effects to reach a height of 1–2 m, relevant for humans. In the ‘Really cooling water bodies in cities’ (REALCOOL) project thermal effects of typical Dutch urban water bodies were explored, using ENVI-met 4.1.3. This model version enables users to specify intensity of turbulent mixing and light absorption of the water, offering improved water temperature simulations. Local thermal effects near individual water bodies were assessed as differences in air temperature and Physiological Equivalent Temperature (PET). The simulations suggest that local thermal effects of small water bodies can be considered negligible in design practice. Afternoon air temperatures in surrounding spaces were reduced by typically 0.2 °C and the maximum cooling effect was 0.6 °C. Typical PET reduction was 0.6 °C, with a maximum of 1.9 °C. Night-time warming effects are even smaller. However, the immediate surroundings of small water bodies can become cooler by means of shading from trees, fountains or water mists, and natural ventilation. Such interventions induce favorable changes in daytime PET.
DOCUMENT
This paper presents five design prototypes for cool urban water environments developed in the 'Really cooling water bodies in cities' (REALCOOL) project. The REALCOOL prototypes address an urgent need: urban water bodies, such as ponds or canals, are often assumed to cool down their surroundings during days with heat stress, whereas recent research shows that this is not always the case and that urban water bodies may actually have warming effects too. There are, however, indications that shading, vaporising water, and proper ventilation can keep water bodies and their surroundings cooler. Yet, it is necessary to explore how these strategies can be optimally combined and how the resulting design guidelines can be communicated to design professionals. The REALCOOL prototypes communicate the spatial layout and biometeorological effects of such combinations and assist design decisions dealing with urban water environments. The micrometeorological simulations with Envimet showed that the prototypes led to local reductions on daytime PET from 1 °C to 7 °C, upon introducing shade. Water mist and fountains were also cooling solutions. The important role of ventilation was confirmed. The paper discusses and concludes about the use of the prototypes as tools for urban design practice.
DOCUMENT
Small urban water bodies, such as ponds or canals, are commonly believed to solve urban heat problems but recent research shows that the cooling effect of large urban water bodies on hot summer days is quite limited and can actually induce a night-time warming effect. However, shading, vaporising water and proper natural ventilation might help to keep urban water bodies and their surroundings cooler. But how to combine these strategies in urban design?The ‘Really cooling water bodies in cities’ (REALCOOL) research project explored the most effective combinations of shading, water vaporisation and natural ventilation around small urban water bodies. Optimal cooling strategies were developed for common urban water bodies in temperate climate zones. They are now made available to designers as virtual design prototypes
LINK
When addressing urban heat problems, climate- conscious urban design has been assuming that urban water bodies such as canals, ditches or ponds cool down their surroundings. Recent research shows that this is not necessarily the case and that urban water bodies may actually have a warming e ect, particularly during late summer season nights. There are however indications that water can have a cooling potential if brought together with the right shading, evaporation and ventilation strategies. Yet, it is not clear how this should be achieved. Knowledge on such spatial configurations should thus be developed and made available to design practice. This challenge is directly addressed by the “REALCOOL” project, a research aiming to define design prototypes showing the physical processes behind the e ective cooling potential of urban water bodies, that design professionals can take as conceptual design frameworks.
DOCUMENT
Urban green and shading are adaptation measures that reduce urban heat. This is evident from meteorological measurements and investigations with surveys and has been described in many papers (e.g. Klemm et al., 2015). The cooling effect of these adaptation measures is reflected by lower air temperatures and an improved thermal comfort. Shading and urban green are also experienced as cooler than impervious urban spaces without vegetation or shading. However, the cooling effect of water bodies in cities, such as rivers, lakes, ponds, canals,fountains, is not clear yet (Steeneveld et al., 2014). Several studies show that the cooling effect of water bodies in cities is small, or can even be a source of heat during nighttime. The effect depends on the characteristics of the water body and the meteorological conditions. Nevertheless, water is often mentioned as an adaptation measure to reduce urban heat.To support urban professionals in designing cooler urban environments by using water bodies, we investigated in more detail how different water types in msterdam contribute to cooling the environment. During five summer days, we measured the cooling effect of five different water bodies: a pond, a fountain, a canal, and two rivers. We used measurements from mobile weather stations (air temperature, relative humidity, wind speed, global radiation and globe temperature) and collected almost 1000 surveys near the water bodies and a reference location. From these data, we could determine the effect of the water bodies on air temperature, thermal comfort and thermal sensation. The research question that we tried to answer with this study is: What is the cooling effect of different water types in the city of Amsterdam during hot days? The study has been carried out within the framework of a Dutch research project ‘Urban climate resilience – Turning climate adaptation into practice’ and supports urban professionals to decide on the right adaptation measures to reduce urban heat.
DOCUMENT
Urban water bodies like ponds or canals are commonly assumed to provide effective cooling in hot periods. Some of the evidence that feeds this assertion is based on remote sensing observations at relatively large scales. Such observations generally reveal reduced surface temperatures of water bodies during daytime, relative to their urbanized environment. This is to be expected because of the extremely large heat capacity of water in combination with its ability to transport heat away from the water surface by turbulent mixing. However, this also implies that the cooling of a water body may proceed only slowly, which may result in higher night-time surface temperatures. This can lead to water bodies contributing to night-time urban heat islands. The existence of a surface-air temperature gradient is a necessary, but insufficient condition for water bodies to influence their environment. In order to noticeably affect the atmospheric temperature, the cooler or warmer air near the water surface needs to be transported to the urban surroundings. Furthermore, for humans such effects are generally only relevant if they are present at a height of 1-2 m. This requires the fetch over the water to be sufficiently large, so that the internal boundary layer can grow to these atmospheric levels. Furthermore, since not only temperature but also wind (ventilation), humidity and radiation contribute to the heat load of humans, possible cooling or heating effects need to be considered in terms of physiologically meaningful quantities, such as the Physiological Equivalent Temperature (PET). Taking such considerations into account, it is no surprise that the effect of water bodies on their atmospheric surroundings are generally found to be small or even nearly absent when considering evidence from atmospheric measurements.Although there are indications that proper combinations of shading, evaporation and ventilation interventions around water bodies can help to keep their surroundings cooler during summer, it is virtually unknown how these strategies can be optimally combined in designs to counter urban heat effectively. The ‘Really cooling water bodies in cities’ (REALCOOL) project explores possible cooling effects of such combinations for relatively small urban water bodies (characteristic horizontal dimension up to a few tens of meters, maximum depth 3m). The goal is to create evidence-based design guidelines of cooling urban water environments — design prototypes — meant for application in urban and landscape design practice.This presentation will address the cooling effects of the design prototypes evaluated with micrometeorological simulations. Special attention will be paid to the cooling effects of the water bodies in the designs. These were assessed using ENVI_MET version 4.1.3., which allows the user to choose the intensity of turbulent mixing of the water. Comparisons with observations and results from water temperature simulations with a model that assumes perfectly mixed water (the “Cool Water Tool”, CWT) showed that enhancing the turbulent mixing in ENVI_MET strongly improves water temperature simulations. Three design experiments were implemented in ENVI_MET: Exp1) testbeds, which are spatial reference situations derived from an inventory of common urban water bodies in The Netherlands, characterized by the shape and dimensions of the water body and the type of urban environment; Exp2) testbeds in which the area occupied by the water was replaced with the paving materials or vegetation flanking the water body in the original testbed; Exp3) design options with optimal combinations of shading, evaporation and ventilation. All simulations were performed for the same set of meteorological conditions, representing a typical heatwave day in The Netherlands. The initial water temperature depends on the water depth and was determined from simulations with the CWT, run for the same heatwave day repetitively until a quasi-equilibrium state was reached.Model outcomes from ENVI_MET were evaluated for the normally warmest period during daytime (around 15:00 CET) and the coolest period during night-time (around 5:00 CET) in the summer, using water temperature just below the water surface and using air temperature and PET at a height of 1.5m. The cooling effect is defined as the difference in air temperature and PET, respectively, between the different design experiments. The differences were computed from the spatial averages over two areas: the area directly above the water surface (Exp1, Exp3) or its replacement (Exp2) and the area directly bordering the water (like quays and sidewalks, called “pedestrian area” hereafter).The simulations with ENVI_MET suggest that the cooling effect of small water bodies on the air temperature is quite small and often negligible (Exp1-Exp2). This is also true for the optimized designs (Exp3-Exp2). The presence of the water body in the testbeds reduced the daytime air temperature in the afternoon by at most 0.8°C directly over the water body and 0.6°C in the pedestrian area (Exp1-Exp2). PET was reduced by at most 1.8°C and 1.9°C, respectively. During night-time, there was a very slight warming effect in a majority of cases, of at most 0.3°C in air temperature. Warming effects in terms of PET were even smaller. The optimized designs led to a reduction of water temperature of at best 0.5°C, relative to the reference situations (Exp1-Exp3). Air temperature was reduced by at most 0.8°C, relative to the temperature in original testbeds. The Physiological Equivalent Temperature (PET) could be reduced by as much as 7°C at 15:00 CET, but this difference was mainly due to shading effects of trees, not to the presence of water.We conclude that small urban water bodies like the ones tested here may not be the most relevant adaptation measure to create cooler urban environments. Their size may simply be too small to have meaningful thermal effects in their surroundings, in accordance with micrometeorological theory on the development of internal boundary layers. Only for water bodies that are sufficiently large cooling effects may become noticeable. This is then also true for possible warming effects. However, the openness of urban water bodies and their surroundings allows ventilation and provides room for trees that provide shade. The combination of these aspects which both lead to cooling effects was found to dominate favourable changes in daytime PET in particular.
LINK
Since it is insufficiently clear to urban planners in the Netherlands to what extent design measures can reduce heat stress and which urban spaces are most comfortable, this study evaluates the impact of shading, urban water, and urban green on the thermal comfort of urban spaces during hot summer afternoons. The methods used include field surveys, meteorological measurements, and assessment of the PET (physiological equivalent temperature). In total, 21 locations in Amsterdam (shaded and sunny locations in parks, streets, squares, and near water bodies) were investigated. Measurements show a reduction in PET of 12 to 22 °C in spaces shaded by trees and buildings compared to sunlit areas, while water bodies and grass reduce the PET up to 4 °C maximum compared to impervious areas. Differences in air temperature between the locations are generally small and it is concluded that shading, water and grass reduce the air temperature by roughly 1 °C. The surveys (n = 1928) indicate that especially shaded areas are perceived cooler and more comfortable than sunlit locations, whereas urban spaces near water or green spaces (grass) were not perceived as cooler or thermally more comfortable. The results of this study highlight the importance of shading in urban design to reduce heat stress. The paper also discusses the differences between meteorological observations and field surveys for planning and designing cool and comfortable urban spaces. Meteorological measurements provide measurable quantities which are especially useful for setting or meeting target values or guidelines in reducing urban heat in practice.
DOCUMENT
Blue spaces in cities are often regarded as adaptation measures that effectively reduce urban heat. Therefore, urban professionals like to integrate blue infrastructures in climate resilient designs. However, several studies indicated that the cooling effect of small water bodies is often small or absent. This poster will inform about the actual cooling potential of small blue spaces such as rivers, ponds, canals and fountains. Simulation results from the REALCOOL project will be complemented with measurements and questionnaire surveys from other studies and relevant scientific literature to illustrate the negligible cooling impact of small blue spaces for climate resilient urban design.
DOCUMENT
This article explores how the combination of research approaches in Research Through Design (RTD) can contribute to generating applicable urban design knowledge. The article is based on learnings from the ‘Really cooling water bodies in cities’ project, a pragmatist RTD combining post-positivist, constructivist and transformative/participatory approaches along six design iterations. The results indicate that the combination of research approaches in RTD can contribute to generating applicable urban design knowledge when the approaches are carefully chosen and combined as to provide feedback on each other, based on a coherent rationale driven by clear research questions and goals.
DOCUMENT
Large floating projects have the potential to overcome the challenge of land scarcity in urban areas and offer opportunities for energy and food production, or even for creating sustainable living environments. However, they influence the physical, chemical, biological and ecological characteristics of water bodies. The interaction of the floating platforms affect multiple complex aquatic processes, and the potential (negative/positive) effects are not yet fully understood. Managing entities currently struggle with lack of data and knowledge that can support adequate legislation to regulate future projects.In the Netherlands the development of small scale floating projects is already present for some years (e.g. floating houses, restaurants, houseboats), and more recently several large scale floating photovoltaic plants (FPV) have been realized. Several floating constructions in the Netherlands were considered as case-studies for a data-collection campaign.To obtain data and images from underneath floating buildings, underwater drones were equipped with cameras and sensors. The drones were used in multiple locations to scan for differences in concentrations of basic water quality parameters (e.g. dissolved oxygen, electrical conductivity, algae, light intensity) from underneath/near the floating structures, which were then compared with data from locations far from the influence of the buildings. Continuous data was also collected over several days using multi-parameter water quality sensors permanently installed under floating structures.
DOCUMENT