In this chapter we move back in time, to when it was not an usance to base our city designs on the natural systems of water and ecology. By the end of the 1980s the dogma of separation of functions, and dividing the city in areas for working, living, leisure and traffic was slowly abandoned and especially the focus on the traffic system, more in particular the car, was leading to uproar. In this timeframe an alternative to apply the principles of nature in urban design was very new and, in the beginning, needed to be conquered on the traditionalists who would pertain using their old-school design standards. In this chapter the development story of Westerpark, and Heilaar-Steenakker is presented. This area in the western outskirts of the city of Breda, in the south of the Netherlands, was one of the first, maybe even the first to use knowledge about the water system, ecological typologies and nature as the basis for urban planning. This article starts with a description in sections two and three of the policy context at national level to illustrate the momentum of change from rationalism towards ecological planning. In section four the policy context in Breda in the early nineties is presented as the context within which the planning of Heilaar-Steenakker (Sect. 8.5) and Westerpark (Sect. 8.6) could be based in a strong sense of the natural processes of ecology and water that formed the landscape in history.
LINK
Conflict lies at the core of urban sustainability transitions and the indispensable structural changes that accompany them. In this chapter we examine the RESILIO project, a multi-actor collaboration in Amsterdam aiming to transition towards a 'climate proof' city through smart water retention systems on urban roofs. The focus is on the conflict that emerged during discussions about controlling the smart valves on the rooftops which are designed to prevent urban flooding. Using a discourse analytical framework, the study analyses participant interactions, conflicting positions, and discursive strategies employed by the partners involved in the initiative. Participants utilised several discursive strategies, including identity, stake, and accountability management, to manage their positions in the conflict and influence the discourse. The study highlights the challenges of addressing conflict that involves redefining accountability and responsibility between public and private actors in the collaborative setting of transition initiatives. By doing so the findings contribute to a deeper understanding of how conflict can shape learning processes and foster sustainable urban transitions.
What is this publication about?In this publication on ‘New urban economies’, we search for answers and insights to a key question: how can cities foster economic development and develop ‘new urban economies’. And, importantly, how can they do that:◗ in concertation with different urban stakeholders, ◗ responding adequately to key challenges and developments beyond their control, ◗ building on the cities’ own identity, industries and competences, ◗ in a sustainable way, ◗ and without compromising weaker groups.
Restoring rivers with an integrated approach that combines water safety, nature development and gravel mining remains a challenge. Also for the Grensmaas, the most southern trajectory of the Dutch main river Maas, that crosses the border with Belgium in the south of Limburg. The first plans (“Plan Ooievaar”) were already developed in the 1980s and were highly innovative and controversial, as they were based on the idea of using nature-based solutions combined with social-economic development. Severe floodings in 1993 and 1995 came as a shock and accelerated the process to implement the associated measures. To address the multifunctionality of the river, the Grensmaas consortium was set up by public and private parties (the largest public-private partnership ever formed in the Netherlands) to have an effective, scalable and socially accepted project. However, despite the shared long term vision and the further development of plans during the process it was hard to satisfy all the goals in the long run. While stakeholders agreed on the long-term goal, the path towards that goal remains disputed and depends on the perceived status quo and urgency of the problem. Moreover, internal and external pressures and disturbances like climate change or the economic crisis influenced perception and economic conditions of stakeholders differently. In this research we will identify relevant system-processes connected to the implementation of nature-based solutions through the lens of social-ecological resilience. This knowledge will be used to co-create management plans that effectively improve the long-term resilience of the Dutch main water systems.
The pipelines are buried structures. They move together with the soil during a seismic event. They are affected from ground motions. The project aims to find out the possible effects of Groningen earthquakes on pipelines of Loppersum and Slochteren.This project is devised for conducting an initial probe on the available data to see the possible actions that can be taken, initially on these two pilot villages, Loppersum and Slochteren, for detecting the potential relationship between the past damages and the seismic activity.Lifeline infrastructure, such as water mains and sewerage systems, covering our urbanised areas like a network, are most of the times, sensitive to seismic actions. This sensitivity can be in the form of extended damage during seismic events, or other collateral damages, such as what happened in Christchurch Earthquakes in 2011 in New Zealand when the sewerage system of the city was filled in with tonnes of sand due to liquefaction.Regular damage detection is one of key solutions for operational purposes. The earthquake mitigation, however, needs large scale risk studies with expected spatial distribution of damages for varying seismic hazard levels.
INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.