The increasing rate of urbanization along with its socio-environmental impact are major global challenges. Therefore, there is a need to assess the boundaries to growth for the future development of cities by the inclusion of the assessment of the environmental carrying capacity (ECC) into spatial management. The purpose is to assess the resource dependence of a given entity. ECC is usually assessed based on indicators such as the ecological footprint (EF) and biocapacity (BC). EF is a measure of the biologically productive areas demanded by human consumption and waste production. Such areas include the space needed for regenerating food and fibers as well as sequestering the generated pollution, particularly CO2 from the combustion of fossil fuels. BC reflects the biological regeneration potential of a given area to regenerate resources as well to absorb waste. The city level EF assessment has been applied to urban zones across the world, however, there is a noticeable lack of urban EF assessments in Central Eastern Europe. Therefore, the current research is a first estimate of the EF and BC for the city of Wrocław, Poland. This study estimates the Ecological Footprint of Food (EFF) through both a top-down assessment and a hybrid top-down/bottom-up assessment. Thus, this research verifies also if results from hybrid method could be comparable with top-down approach. The bottom-up component of the hybrid analysis calculated the carbon footprint of food using the life cycle assessment (LCA) method. The top-down result ofWrocław’s EFF were 1% greater than the hybrid EFF result, 0.974 and 0.963 gha per person respectively. The result indicated that the EFF exceeded the BC of the city of Wrocław 10-fold. Such assessment support efforts to increase resource efficiency and decrease the risk associated with resources—including food security. Therefore, there is a need to verify if a city is able to satisfy the resource needs of its inhabitants while maintaining the natural capital on which they depend intact. Original article at: https://doi.org/10.3390/resources7030052 © 2018 by the authors. Licensee MDPI.
MULTIFILE
The potential of technological innovation to address urban sustainability has been widely acknowledged over the last decade. Across cities globally, local governments have engaged in partnership arrangements with the private sector to initiate pilot projects for urban innovation, typically co-funded by innovation subsidies. A recurring challenge however is how to scale up successful projects and generate more impact. Drawing on the business and management literature, we introduce the concept of organizational ambidexterity to provide a novel theoretical perspective on sustainable urban innovations. We examine how to align exploration (i.e., test and experiment with digital technologies, products, platforms, and services) with exploitation (i.e., reaping the financial benefits from digital technologies by bringing products, platforms, and services to the market), rooted in the literature on smart cities. We conclude that the concept of ambidexterity, as elaborated in the business and management literature and practiced by firms, can be translated to the city policy domain, provided that upscaling or exploitation in a smart city context also includes the translation of insights from urban experiments, successful or not, into new routines, regulations, protocols, and stakeholder/citizen engagement methods.
Introduction: There are good reasons to study urban innovation from a systemic perspective. A key finding in innovation research is that organizations rarely innovate in isolation, but in interaction with clients, competitors, suppliers, and other organizations. A system perspective is useful in understanding and analyzing these interactions. Cities and urban regions are increasingly recognized as key milieus in which these interactions occur. The urban innovation system approach conceptualizes the city or urban region as a context in which innovations emerge from complex interactions between urban actors—firms, citizens, governments, knowledge institutes— in a particular institutional setting. The systemic view of innovation departs from traditional linear models that depict innovation as a staged process that starts with (basic) scientific research and ends with commercialization by companies. Innovation processes are much more complex and diverse, influenced by multiple actors that interact in networks with feedback loops, and involving many types of knowledge beyond scientific knowledge. Urban innovation systems are nested in innovation systems on other spatial levels—regional, national, international. Studies on urban innovation systems seek to explain how innovations emerge in an urban context, why urban regions differ in their innovative performance, and also address questions on the governance and management of such systems. Studies in this field draw from a variety of disciplines including economic geography, urban and regional economics, political sciences, innovation studies, social sciences, and urban planning.
MULTIFILE
298 woorden: In the upcoming years the whole concept of mobility will radically change. Decentralization of energy generation, urbanization, digitalization of processes, electrification of vehicles and shared mobility are only some trends which have a strong influence on future mobility. Furthermore, due to the shift towards renewable energy production, the public and the private sector are required to develop new infrastructures, new policies as well as new business models. There are countless opportunities for innovative business models emerging. Companies in this field – such as charging solution provider, project management or consulting companies that are part of this project, Heliox and Over Morgen respectively – are challenged with countless possibilities and increasing complexity. How to overcome this problem? Academic research proposes a promising approach, namely the use of business model patterns for business model innovation. In short, these business model patterns are descriptions of proven practical solutions to common business model challenges. An example for a general pattern would be the business model pattern “Consumables”. It describes how to lock in a customer into an ecosystem by using a subsidized basic product and complement it with overpriced consumables. This pattern works really well and has been used by many companies (e.g. Senseo, HP, or Gillette). To support the business model innovation process of Heliox and Over Morgen as well as companies in the electric mobility space in general, we propose to systematically consolidate and develop business model patterns for the electric mobility sector and to create a database. Electric mobility patterns could not only foster creativity in the business model innovation process but also enhance collaboration in teams. By having a classified list of business model pattern for electric mobility, practitioners are equipped which a heuristic tool to create, extend and revise business models for the future.