The concept of immersion has been widely used for the design and evaluation of user experiences. Augmented, virtual and mixed-reality environments have further sparked the discussion of immersive user experiences and underlying requirements. However, a clear definition and agreement on design criteria of immersive experiences remains debated, creating challenges to advancing our understanding of immersive experiences and how these can be designed. Based on a multidisciplinary Delphi approach, this study provides a uniform definition of immersive experiences and identifies key criteria for the design and staging thereof. Thematic analysis revealed five key themes – transition into/out of the environment, in-experience user control, environment design, user context relatedness, and user openness and motivation, that emphasise the coherency in the user-environment interaction in the immersive experience. The study proposes an immersive experience framework as a guideline for industry practitioners, outlining key design criteria for four distinct facilitators of immersive experiences–systems, spatial, empathic/social, and narrative/sequential immersion. Further research is proposed using the immersive experience framework to investigate the hierarchy of user senses to optimise experiences that blend physical and digital environments and to study triggered, desired and undesired effects on user attitude and behaviour.
MULTIFILE
Smart glasses were perceived to be potentially revolutionary for healthcare, however, there is only limited research on the acceptance and social implications of smart glasses in healthcare. This study aims to get a better insight into the theoretical foundations and the purpose was to identify themes regarding adoption, mediation, and the use of smart glasses from the perspective of healthcare professionals. A qualitative research design with focus groups was used to collect data. Three focus groups with 22 participants were conducted. Data were analyzed using content analysis. Our analysis revealed six overarching themes related to the anticipated adoption of smart glasses: knowledge, innovativeness, use cases, ethical issues, persuasion, and attitude. Nine themes were found related to anticipated mediation and use of smart glasses: attention, emotions, social influences, design, context, camera use, risks, comparisons to known products, and expected reaction and might influence the acceptance of smart glasses.
MULTIFILE
Smart glasses were perceived to be potentially revolutionary for healthcare, however, there is only limited research on the acceptance and social implications of smart glasses in healthcare. This study aims to get a better insight into the theoretical foundations and the purpose was to identify themes regarding adoption, mediation, and the use of smart glasses from the perspective of healthcare professionals. A qualitative research design with focus groups was used to collect data. Three focus groups with 22 participants were conducted. Data were analyzed using content analysis. Our analysis revealed six overarching themes related to the anticipated adoption of smart glasses: knowledge, innovativeness, use cases, ethical issues, persuasion, and attitude. Nine themes were found related to anticipated mediation and use of smart glasses: attention, emotions, social influences, design, context, camera use, risks, comparisons to known products, and expected reaction and might influence the acceptance of smart glasses.
MULTIFILE
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
communicative participation, language disordersOBJECTIVE(S)/RESEARCH QUESTION(S) Speech and language therapists (SLTs) are the primary care professionals to treat language and communication disorders. Their treatment is informed by a variety of outcome measures. At present, diagnosis, monitoring of progress and evaluation are often based on performance-based and clinician-reported outcomes such as results of standardized speech, language, voice, or communication tests. These tests typically aim to capture how well the person can produce or understand language in a controlled situation, and therefore only provide limited insight in the person’s challenges in life. Performance measures do not incorporate the unobservable feelings such as a patient's effort, social embarrassment, difficulty, or confidence in communication. Nor do they address language and communication difficulties experienced by the person themselves, the impact on daily life or allow patients to set goals related to their own needs and wishes. The aim of our study is give our patients a voice and empower SLTs to incorporate their patient's perspective in planning therapy. We will Aangemaakt door ProjectNet / Generated by ProjectNet: 08-12-2020 12:072Subsidieaanvraag_digitaal / Grant Application_digitaalDossier nummer / Dossier number: 80-86900-98-041DEFINITIEFdevelop a valid and reliable patient-reported outcome measure that provides information on communicative participation of people with communication disorders and integrate this item bank in patient specific goal setting in speech and language therapy. Both the item bank and the goal setting method will be adapted in cocreation with patients to enable access for people with communication difficulties.STUDY DESIGN Mixed methods research design following the MRC guidance for process evaluation of complex interventions, using PROMIS methodology including psychometric evaluation and an iterative user-centered design with qualitative co-creation methods to develop accessible items and the goal setting method.RESEARCH POPULATION Children, adolescents and adults with speech, language, hearing, and voice disorders.OUTCOME MEASURES An online patient-reported outcome measure on communicative participation, the Communicative Participation Item Bank (CPIB), CPIB items that are accessible for people with language understanding difficulties, a communicative-participation person-specific goal setting method developed with speech and language therapists and patients and tested on usability and feasibility in clinical practice, and a course for SLTs explaining the use of the goal-setting method in their clinical reasoning process.RELEVANCE This study answers one of the prioritized questions in the call for SLTs to systematically and reliably incorporate the clients’ perspective in their daily practice to improve the quality of SLT services. At present patient reported outcomes play only a small role in speech and language therapy because 1) measures (PROMS) are often invalid, not implemented and unsuitable for clinical practice and 2) there is a knowledge gap in how to capture and interpret outcomes from persons with language disorders.
Examining in-class activities to facilitate academic achievement in higher educationThere is an increasing interest in how to create an effective and comfortable indoor environment for lecturers and students in higher education. To achieve evidence-based improvements in the indoor environmental quality (IEQ) of higher education learning environments, this research aimed to gain new knowledge for creating optimal indoor environmental conditions that best facilitate in-class activities, i.e. teaching and learning, and foster academic achievement. The academic performance of lecturers and students is subdivided into short-term academic performance, for example, during a lecture and long-term academic performance, during an academic course or year, for example. First, a systematic literature review was conducted to reveal the effect of indoor environmental quality in classrooms in higher education on the quality of teaching, the quality of learning, and students’ academic achievement. With the information gathered on the applied methods during the literature review, a systematic approach was developed and validated to capture the effect of the IEQ on the main outcomes. This approach enables research that aims to examine the effect of all four IEQ parameters, indoor air quality, thermal conditions, lighting conditions, and acoustic conditions on students’ perceptions, responses, and short-term academic performance in the context of higher education classrooms. Next, a field experiment was conducted, applying the validated systematic approach, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. Finally, a qualitative case study gathered lecturers’ and students’ perceptions related to the IEQ. Furthermore, how these users interact with the environment to maintain an acceptable IEQ was studied.During the systematic literature review, multiple scientific databases were searched to identify relevant scientific evidence. After the screening process, 21 publications were included. The collected evidence showed that IEQ can contribute positively to students’ academic achievement. However, it can also affect the performance of students negatively, even if the IEQ meets current standards for classrooms’ IEQ conditions. Not one optimal IEQ was identified after studying the evidence. Indoor environmental conditions in which students perform at their best differ and are task depended, indicating that classrooms should facilitate multiple indoor environmental conditions. Furthermore, the evidence provides practical information for improving the design of experimental studies, helps researchers in identifying relevant parameters, and lists methods to examine the influence of the IEQ on users.The measurement methods deduced from the included studies of the literature review, were used for the development of a systematic approach measuring classroom IEQ and students’ perceived IEQ, internal responses, and short-term academic performance. This approach allowed studying the effect of multiple IEQ parameters simultaneously and was tested in a pilot study during a regular academic course. The perceptions, internal responses, and short-term academic performance of participating students were measured. The results show associations between natural variations of the IEQ and students’ perceptions. These perceptions were associated with their physiological and cognitive responses. Furthermore, students’ perceived cognitive responses were associated with their short-term academic performance. These observed associations confirm the construct validity of the composed systematic approach. This systematic approach was then applied in a field experiment, to explore the effect of multiple indoor environmental parameters on students and their short-term academic performance in higher education. A field study, with a between-groups experimental design, was conducted during a regular academic course in 2020-2021 to analyze the effect of different acoustic, lighting, and indoor air quality (IAQ) conditions. First, the reverberation time was manipulated to 0.4 s in the intervention condition (control condition 0.6 s). Second, the horizontal illuminance level was raised from 500 to 750 lx in the intervention condition (control condition 500 lx). These conditions correspond with quality class A (intervention condition) and B (control condition), specified in Dutch IEQ guidelines for school buildings (2015). Third, the IAQ, which was ~1100 ppm carbon dioxide (CO2), as a proxy for IAQ, was improved to CO2 concentrations under 800 ppm, meeting quality class A in both conditions. Students’ perceptions were measured during seven campaigns with a questionnaire; their actual cognitive and short-term academic performances were evaluated with validated tests and an academic test, composed by the lecturer, as a subject-matter-expert on the taught topic, covered subjects discussed during the lecture. From 201 students 527 responses were collected and analyzed. A reduced RT in combination with raised HI improved students’ perceptions of the lighting environment, internal responses, and quality of learning. However, this experimental condition negatively influenced students’ ability to solve problems, while students' content-related test scores were not influenced. This shows that although quality class A conditions for RT and HI improved students’ perceptions, it did not influence their short-term academic performance. Furthermore, the benefits of reduced RT in combination with raised HI were not observed in improved IAQ conditions. Whether the sequential order of the experimental conditions is relevant in inducing these effects and/or whether improving two parameters is already beneficial, is unknownFinally, a qualitative case study explored lecturers’ and students’ perceptions of the IEQ of classrooms, which are suitable to give tutorials with a maximum capacity of about 30 students. Furthermore, how lecturers and students interact with this indoor environment to maintain an acceptable IEQ was examined. Eleven lecturers of the Hanze University of Applied Sciences (UAS), located in the northern part of the Netherlands, and twenty-four of its students participated in three focus group discussions. The findings show that lecturers and students experience poor thermal, lighting, acoustic, and IAQ conditions which may influence teaching and learning performance. Furthermore, maintaining acceptable thermal and IAQ conditions was difficult for lecturers as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to pause earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status, and their quality of learning. Acceptable air and thermal conditions in classrooms will mitigate the need to open windows and doors. This allows lecturers to keep doors and windows closed, combining better classroom conditions with neither noise disturbances nor related distractions. Designers and engineers should take these end users’ perceptions into account, often monitored by facility management (FM), during the renovation or construction of university buildings to achieve optimal IEQ conditions in higher education classrooms.The results of these four studies indicate that there is not a one-size fits all indoor environmental quality to facilitate optimal in-class activities. Classrooms’ thermal environment should be effectively controlled with the option of a local (manual) intervention. Classrooms’ lighting conditions should also be adjustable, both in light color and light intensity. This enables lecturers to adjust the indoor environment to facilitate in-class activities optimally. Lecturers must be informed by the building operator, for example, professionals of the Facility Department, how to change classrooms’ IEQ settings. And this may differ per classroom because each building, in which the classroom is located, is operated differently apart from the classroom location in the building, exposure to the environment, and its use. The knowledge that has come available from this study, shows that optimal indoor environmental conditions can positively influence lecturers’ and students’ comfort, health, emotional balance, and performance. These outcomes have the capacity to contribute to an improved school climate and thus academic achievement.