Banana is an important commercial fruit crop for smallholder farmers in Arba Minch, southern Ethiopia. However, its sector is experiencing many constraints and limited attention given to productivity and marketing. Therefore, this study was conducted to analyze the banana value chain in order to identify constraints on productivity and marketing, and possibilities of improvements towards a sustainable value chain in Arba Minch. Data were collected through a survey, key informants’ interviews, and focus group discussions. Different analytical and statistical tools were used for data analysis. Results describe actors, supporters, and influencers of the existing banana chain. The current banana chain has three different distribution channels in Arba Minch. The channel that connects with rural consumers has the highest value share for farmers while the channel that includes traveling traders has the lowest value share for farmers. The marketing cooperative channel has an intermediate value share for farmers in the chain. Poor agronomic practice, diseases, pests, and climate change were the major constraints for the banana yield while limited market information, lack of cold store and refrigerated trucks, poor post-harvest handling, lack of alternative markets, and weak capacity of cooperatives were the main constraints for banana marketing in Arba Minch. Economic, social and environmental indicators have a moderate sustainability performance within the Ethiopian context. The chain has an advantage in terms of profitability, employment, emission of air pollutants and constraints in terms of coordination, value share, profit margin, market diversity, product and market information, transportation, waste management, and safety and hygiene.
DOCUMENT
This study proposes a systematic value chain approach to helping businesses identify and eliminate inefficiencies. The authors have developed a robust framework, which food-sector entrepreneurs can use to increase profitability of an existing business or to create new profitable opportunities. The value chain approach provides win-win opportunities for players within the value chain. To test the robustness of the framework, the authors use food waste as an example of a critical inefficiency and apply it to two different food sector business cases, each operating in diverse conditions. Because the suggested framework addresses the core elements and parameters for the existence and competitiveness of a business, the model can be adapted to other sectors.
DOCUMENT
Circularity and recycling are gaining increased attention, yet the amount of recycled plastic applied in new products remains low. To accelerate its uptake by businesses, it will be useful to empirically investigate the barriers, enablers, needs and, ultimately, requirements to increase uptake of recycled plastic feedstock for the production of new plastic products. During the six focus group sessions we conducted, a value chain approach was used to map the factors that actors face regarding the implementation of recycled materials. The identified factors were structured based on three levels: determining whether a certain factor acted as a barrier or enabler, identifying the steps in the value chain that the factor directly affected and the category it could be subdivided into. The results were then further processed by translating the (rather abstract) needs of businesses into (specific) requirements from industry. This study presented eight business requirements that require actions from other actors in the value chain: design for recycling, optimised waste processing, standardisation, material knowledge, showing possibilities, information and education, cooperation, and regulation and government intervention. The main scientific contributions were the value chain perspective and the applied relevance of the findings. Future studies may delve deeper into the individual factors identified.
MULTIFILE
The Interreg Europe eBussed project supports the transition of European regions towards low carbon mobility and more efficient transport. The regions involved are Turku (Finland), Hamburg (Germany), Utrecht (The Netherlands), Livorno (Italy), South Transdanubia (Hungary) and Gozo island in Malta. It promotes the uptake of e-busses in new regions and supports the expansion of existing e-fleets. Within the project, there are four thematic working groups formed that aim at delivering a best practices report and policy recommendations to be used in the partner regions. Thematic Working Group 4 (TWG4) focusses on the topics of Procurement, Tendering and Costs of e-busses. As a starting point for TWG4, the value chain for e-bus public transport per region has been mapped. By mapping how the value chain for e-bus public transport works and defining the nature of the issues, problems or maybe challenges per region can be better understood.
DOCUMENT
Most food & agribusiness stakeholders (entrepreneurs in particular) agree that it is not only difficult to innovate new products and technology, but also to realize its true market potential. A lack of market and/or supply partnerships, i.e. a robust and committed value chain, is often cited as the reason for the failure to achieve this potential. The key objective of this research is to understand the necessary elements needed for building a committed value chain and to suggest an approach to realize them. Our research shows that partnerships which combine the four key elements of aligned objectives and incentives and shared responsibilities and information are most likely to realize a committed value chain. The research further provide guidelines to developing these elements and achieving committed chains in practice. Finally, we demonstrate the relevance of the suggested approach using two real-life business cases; the first one is a business success story with a committed value chain, while the other is a story of a failure due to the lack of a committed chain
DOCUMENT
This applied research is an attempt to analyse the effectiveness of milk marketing and facilitate developing a sustainable milk value chain for dairy farmer’s groups in Punakha district. Both quantitative and qualitative methods of survey, key informant interviews and focus group discussion were used as research strategies to obtain relevant information. The survey was conducted using both open and closed-ended structured questionnaire in seven subdistricts of Barp, Dzomi, Guma, Kabisa, Shelnga-Bjemi, Talog and Toedwang. A total of 60 respondents; 30 existing milk suppliers and 30 non-milk suppliers were drawn using a simple random sampling technique. One-to-one interviews were conducted following semi-structured questions with eight key informants in the chain. One focus group interview was conducted with the existing dairy farmer groups representatives to triangulate and discover in-depth information about the situation of the milk value chain in the district. The survey data was analysed using the Statistical Package for Social Sciences software version 20. A method of grounded theory design was used to analyse the qualitative data of interviews and focus group discussion. Value chain mapping was employed for assessing the operational situation of the current milk chain. The mean cost of milk production was estimated at Nu.27.53 per litre and the maximum expenses were incurred in animal feeds which were estimated to be 46.34% of the total cost of milk production. In this study, milk producers had the highest share of added value and profit which were estimated at 45.45% and 44.85% respectively. Limited information and coordination amongst stakeholders have contributed to slow progression in the formal milk market. The finding reveals that 90% of nondairy farmer groups respondents were interested in joining formal milk marketing. The average morning milk available for supply from this group would be 4.41 ± 3.07 litres daily by each household. The study also found that 50% of the respondents were interested in supplying evening milk with an average of 4.43 ± 2.25 litres per day per household. Based on the result of this study, it was concluded that there are possibilities of expanding the milk value chain in the district. However, there is a need to enhance consistent milk supply through a quality-based milk payment system, access to reasonable input supplies, and facilitate strong multi-stakeholder processes along the milk value chain.
DOCUMENT
Consumers expect product availability as well as product quality and safety in retail outlets. When designing or re-designing fruit and vegetables supply chain networks one has to take these demands into consideration next to traditional efficiency and responsiveness requirements. In food science literature, much attention has been paid to the development of Time-Temperature Indicators to monitor individually the temperature conditions of food products throughout distribution as well as quality decay models that are able to predict product quality based upon this information. This chapter discusses opportunities to improve the design and management of fruit and vegetables supply chain networks. If product quality in each step of the supply chain can be predicted in advance, good flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, higher product quality, and less product losses in retail. This chapter works towards a preliminary diagnostic instrument, which can be used to assess supply chain networks on QCL (Quality Controlled Logistics). Findings of two exploratory case studies, one on the tomato chain and one on the mango chain, are presented to illustrate the value of this concept. Results show the opportunities and bottlenecks for quality controlled logistics depend on product—(e.g. variability in quality), process—(e.g. ability to use containers and sort on quality), network- (e.g. current level of cooperation), and market characteristics (e.g. higher prices for better products).
DOCUMENT
This paper assesses the sustainability performance of the banana value chain by comparing and discussing 25 attributes owing to different sustainability dimensions. The paper identifies critical aspects and provides a qualitative assessment of the sustainabilityperformances of banana chains at the local level. The study finds economic, social, and environmental indicators have moderate sustainability performance in the Arba Minch, Ethiopia. The chain has an advantage in terms of profitability, employment, and emissionof air pollutants; and constraints in terms of coordination, value share, profit margins, market diversity, product and market information, transportation, waste management, and safety and hygiene.
DOCUMENT
With this project we strived to contribute to structural reduction of post-harvest food losses and food quality improvement in the Kenyan avocado and dairy value chains through the application of technical solutions and tools as well as improved coordination in those food chains. The consortium had four types of partners: 1. Universities (2 Kenyan, 4 Dutch), 2. Private sector actorsin those chains, 3. Organisations supporting those chains, and 4. Network partners. The applied research has been implemented in cooperation with all partners, whereby students at involved universities conducted most of the field studies and all other consortium partners support and interact depending on the phases.The FORQLAB project targeted two areas in Kenya for both commodities, a relatively well-developed chain in the central highlands and a less-develop chain in Western-Kenya. The research methods were the business to business and multi-stakeholder (living lab) approaches to increase the potential for uptake of successful interventions in the chain. The project consisted of four phases: 1. Inventory and inception, 2. Applied research, 3. Spreading research outputs through living lab networks, 4. Translation of project output in curricula and trainings. The outcomes were: two knowledge exchange platforms (Living Labs) supported with some advice for sustainable food loss reduction, a research agenda, proposals for ICT and other tech solutions and an implementation strategy; communication and teaching materials for universities and TVETs; and knowledge transfer and uptake.
DOCUMENT
Information and Communication Technologies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness within information science has led to discussions on sustainable development. ‘Green Computing’ has been introduced: the study and practice of environmentally sus- tainable computing. This can be defined as ‘designing, manufacturing, using, and disposing of com- puters, servers, and associated subsystems - such as monitors, printers, storage devices, and net- working and communications systems - efficiently and effectively with minimal or no impact on the en- vironment’. Nevertheless, the data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the value of the data stored. We explore the possibilities to use information and archival science to reduce the amount of stored data. In reducing this amount of stored data, it’s possible to curb unnecessary power consumption. The objectives of this paper are to develop a model (and test its viablility) to [1] increase awareness in organizations for the environ- mental aspects of data storage, [2] reduce the amount of stored data, and [3] reduce power consump- tion for data storage. This model integrates the theories of Green Computing, Information Value Chain (IVC) and Archival Retention Levels (ARLs). We call this combination ‘Green Archiving’. Our explora- tory research was a combination of desk research, qualitative interviews with information technology and information management experts, a focus group, and two exploratory case studies. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their value. Such an ICT will automatically reduce storage capacity and curb power consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different for- mats, it will lower costs and it reduces the potential for liability.
DOCUMENT