Mexican oregano is a non-timber forest product harvested in natural vegetation and represents an important source of income for rural families. Recent reports have highlighted decreases in natural populations caused by increased harvest intensity. Oregano leaf harvesting is a complex problem, involving different components and views, and has a clear spatial dimension. We proposed an analytical framework based on multi-criteria-multi-objective analyses. GIS tools were used as the platform for managing, displaying and analyzing ecological and socioeconomic information from different sources in order to evaluate land suitability of three different management strategies for two competing land objectives: oregano Harvest and oregano Regeneration. The incorporation of environmental evaluation criteria in the analysis allowed the identification of new potential oregano harvesting areas which were neither reported by harvesters, nor registered during harvesting trips. Socio-economic criteria, such as land tenure, highlighted the fact that a substantial proportion of current oregano harvesting areas are located outside ejido limits resulting in potential conflicts for resource access. The proposed Balanced oregano management strategy, in which the same proportion of suitable area (50%) was assigned to both objectives, represents the most favorable management strategy. This option allows harvesters to continue earning an income from oregano leaf harvest; and at the same time helps in the selection of the best areas for oregano regeneration. It also represents a management strategy with a smaller impact on oregano populations and on the harvesters ́ income, as well as lower monitoring costs. The proposed analytical frame-work may contribute to advance the application of systematic approaches for solving decision-making problems in areas where oregano leaves and other NTFP are harvested.
MULTIFILE
Green roofs received increased scientific attention with respect to climate adaptation in urban environments for their hydrological, biodiversity and insulative capacities. Yet, the thermal properties of roofs with an additional water layer underneath the vegetation substrate (blue-green roofs) are not well represented in scientific research. In this field study, we examined the impact of surface temperatures, indoor temperature and insulative properties of blue-green, green, and conventional gravel/bitumen roofs in the city of Amsterdam for early 20th century buildings. Temperature sensor (IButtons) results indicate that outside surface temperatures of blue-green roofs were more stable than for conventional roofs. For instance, for three warm periods during summer (2021) surface substrate temperatures peaked much higher for gravel roofs (+8 oC) or bitumen roofs (+18 oC) than for blue-green roofs. On top of that, during a cold period in winter average water crate layer temperatures remained 3.0 oC higher and much more stable than substrate temperatures of blue-green roofs and conventional roofs, implicating that the blue layer functions as an extra temperature buffer. The effect of lower daily variation of surface temperatures in winter and summer is also reflected by inside air temperatures. Inside temperatures showed that locations with blue-green roofs are less sensitive to outside air temperatures, as daily temperature fluctuations (standard deviations) were 0.19 and 0.23 oC lower for warm and cold periods, respectively, compared to conventional roofs. This effect seems rather small but comprises a relatively large proportion of the total daily variation of 24% and 64% of warm and cold periods respectively.
With climate change and urban development, water systems are changing faster than ever. Currently, the ecological status of water systems is still judged based on single point measurements, without taking into account the spatial and temporal variability of water quality and ecology. There is a need for better and more dynamic monitoring methods and technologies. Aquatic drones are becoming accessible and intuitive tools that may have an important role in water management. This paper describes the outcomes, field experiences and feedback gathered from the use of underwater drones equipped with sensors and video cameras in various pilot applications in The Netherlands, in collaboration with local water managers. It was observed that, in many situations, the use of underwater drones allows one to obtain information that would be costly and even impossible to obtain with other methods and provides a unique combination of three-dimensional data and underwater footage/images. From data collected with drones, it was possible to map different areas with contrasting vegetation, to establish connections between fauna/flora species and local water quality conditions, or to observe variations of water quality parameters with water depth. This study identifies opportunities for the application of this technology, discusses their limitations and obstacles, and proposes recommendation guidelines for new technical designs
LINK
Zand en andere grove grondstoffen worden steeds schaarser door intensief gebruik in infrastructuur en industrie, terwijl miljarden kubieke meters slib wereldwijd worden uitgebaggerd om vaargeulen en havens operationeel te houden. Vanwege dit groeiende tekort aan traditionele grondstoffen is er behoefte aan het ontwikkelen van nieuwe methodieken voor hergebruik van slib en lokaal sediment, onder andere voor dijkversterking en ophoging van landbouwgronden. Echter wordt gebaggerd slib volgens de regelgeving nog als een van de grootste potentiële afvalstromen gezien. Ook is slib complexer in het gebruik omdat het bestaat uit een heterogeen mengsel van onder meer water, zand, organisch materiaal, fijnstof en gas. Vanwege schaarste in bouwmaterialen lopen er steeds meer initiatieven voor het nuttig hergebruiken van gebaggerd slib, maar de optimale laagdikte en aanlegtechnieken moeten nog worden onderzocht. Met dit project zoeken lectoraat Sustainable River Management samen met Hogeschool Van Hall Larenstein en de praktijkpartners Klaei B.V., Waterschap Noorderzijlvest en EcoShape naar de best practices voor het produceren van waardevol klei uit havenslib. Via laboratoriumexperimenten en veldproeven binnen grootschalige pilots worden mechanische eigenschappen van havenslib uit de Lauwersoog haven in beeld gebracht. Er wordt gezocht naar de optimale dikte van havenslib om bruikbare klei te produceren. Daarbij wordt onderzocht of de mechanische eigenschappen van de geproduceerde klei afhankelijk zijn van de laagdikte van de initiële laag of havenslib. De resultaten verbinden de laagdikte in rijpingscompartimenten met materiaaleigenschappen en monitoren de initiële verouderingsprocessen na de aanleg van de klei in een proefdijk. Het eindresultaat biedt inzicht in de best practices voor toepassing van havenslib en de daarbij horende materiaaleigenschappen. Dit project draagt daarmee direct bij aan de ontwikkeling van een nieuw, duurzaam materiaal voor gebruik in dijkversterkingen en landbouw en een circulaire economie in Nederland in 2050.
The Netherlands must build one million homes and retrofit eight million buildings by 2030, while halving CO₂ emissions and achieving a circular economy by 2050. This demands a shift from high-carbon materials like concrete—responsible for 8% of global CO₂ emissions—and imported timber, which inflates supply-chain emissions. Mycelium offers a regenerative, biodegradable alternative with carbon-sequestration potential and minimal energy input. Though typically used for insulation, it shows structural promise—achieving compressive strengths of 5.7 MPa and thermal conductivities of 0.03–0.05 W/(m·K). Hemp and other lignocellulosic agricultural byproducts are commonly used as substrates for mycelium composites due to their fibrous structure and availability. However, hemp (for e.g.) requires 300–500 mm of water per cycle and centralized processing, limiting its circularity in urban or resource-scarce areas. Aligned with the CLICKNL Design Power Agenda, this project explores material-driven design innovation through a load-bearing mycelium-based architectural product system, advancing circular, locally embedded construction. To reduce environmental impact, we will develop composites using regional bio-waste—viz. alienated vegetation, food waste, agriculture and port byproducts—eliminating the need for water-intensive hemp cultivation. Edible fungi like Pleurotus ostreatus (oyster mushroom) will enable dual-function systems that yield food and building material. Design is key for moving beyond a singular block to a full product system: a cluster of modular units emphasizing geometry, interconnectivity, and compatibility with other building layers. Aesthetic variation (dimension, color, texture) supports adaptable, expressive architecture. We will further assess lifecycle performance, end-of-(service)-life scenarios, and on-site fabrication potential. A 1:1 prototype at The Green Village will serve as a demonstrator, accelerating stakeholder engagement and upscaling. By contributing to the KIA mission on Social Desirability, we aim to shift paradigms—reimagining how we build, live, grow, and connect through circular architecture.
In the coming four years, the Hedwige-Prosperpolder in the Schelde estuary will be reopened for nature restoration. This creates opportunities, within a binational Dutch-Belgian consortium, to experiment with the existing dike and to perform targeted dike breach experiments and breach monitoring. We will exploit this opportunity to investigate a newly described, potentially valuable contribution of vegetated foreshores to flood safety: the restriction of dike breach extent, and thus of flooding volume, in the case of failure of the dike. Fostering marsh development in front of realigned dikes could improve safety more than hitherto thought. Not only does it reduce dike failure probabilities, it may also restrict the consequences of failures. Even though this is not the primary goal of the HPP realignment, in this Living Lab we will study how management realignment can be used as a nature-based solution for flood safety. We will model the contribution of vegetated foreshores to breach development, calculate its contribution to reduction of risks, and validate the model using the breach experiment. We will also study the conditions for, and rates of, vegetation and soil strength development in front of realigned dikes. We will explore novel designs and maintenance schemes for realigned dikes connected to a vegetated foreshore. Finally, we will study how people experience physical changes in the landscape in terms of place attachment: will they be reconnected to the changed landscape when properly informed on the new role of this landscape in ecosystem development and safety enhancement? The project consortium is composed of engineers, ecologists and social scientists with a strong track record in multidisciplinary co-operation. It is externally supported by national and regional water authorities, contractors and engineering companies. It is ideally situated to translate new knowledge into operational procedures, and incorporate this into the education of future coastal professionals.