Background: INTELLiVENT-adaptive support ventilation (ASV) is an automated closed-loop mode of invasive ventilation for use in critically ill patients. INTELLiVENT-ASV automatically adjusts, without the intervention of the caregiver, ventilator settings to achieve the lowest work and force of breathing. Aims: The aim of this case series is to describe the specific adjustments of INTELLiVENT-ASV in patients with acute hypoxemic respiratory failure, who were intubated for invasive ventilation. Study design: We describe three patients with severe acute respiratory distress syndrome (ARDS) because of COVID-19 who received invasive ventilation in our intensive care unit (ICU) in the first year of the COVID-19 pandemic. Results: INTELLiVENT-ASV could be used successfully, but only after certain adjustments in the settings of the ventilator. Specifically, the high oxygen targets that are automatically chosen by INTELLiVENT-ASV when the lung condition ‘ARDS’ is ticked had to be lowered, and the titration ranges for positive end expiratory pressure (PEEP) and inspired oxygen fraction (FiO2) had to be narrowed. Conclusions: The challenges taught us how to adjust the ventilator settings so that INTELLiVENT-ASV could be used in successive COVID-19 ARDS patients, and we experienced the benefits of this closed-loop ventilation in clinical practice. Relevance to clinical practice: INTELLiVENT-ASV is attractive to use in clinical practice. It is safe and effective in providing lung-protective ventilation. A closely observing user always remains needed. INTELLiVENT-ASV has a strong potential to reduce the workload associated with ventilation because of the automated adjustments.
Current symptom detection methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not standardised and not consistent with HVAC process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to a very limited application of energy performance diagnosis systems in practice. This paper proposes detection methods to overcome these issues, based on the 4S3F (four types of symptom and three types of faults) framework. A set of generic symptoms divided into three categories (balance, energy performance and operational state symptoms) is discussed and related performance indicators are developed, using efficiencies, seasonal performance factors, capacities, and control and design-based operational indicators. The symptom detection method was applied successfully to the HVAC system of the building of The Hague University of Applied Sciences. Detection results on an annual, monthly and daily basis are discussed and compared. Link to the formail publication via its DOI https://doi.org/10.1016/j.autcon.2020.103344
Thermal comfort in operating theatres is a less addressed research component of the in-door environment in operating theatres. The air quality naturally gets most attention when considering the risk of surgical site infections. However, the importance of thermal comfort must not be underestimated. In this research, the current thermal comfort situation of staff members is investigated. Results show that the thermal comfort for the members of a surgical team is perceived as not optimal. Application of the PMV and DR models needs further attention when applied for operating theatres. For the investigated ventilation systems, the differences in thermal comfort outcomes are small.