Chronic obstructive pulmonary disease (COPD) is a risk factor for death in patients admitted to intensive care units (ICUs) for respiratory support. Previous reports suggested higher mortality in COPD patients with COVID-19. It is yet unknown whether patients with COPD were treated differently compared to non-COPD patients. We compared the ventilation management and outcomes of invasive ventilation for COVID-19 in COPD patients versus non-COPD patients. This was a post hoc analysis of a nation-wide, observational study in the Netherlands. COPD patients were compared to non-COPD patients with respect to key ventilation parameters. The secondary endpoints included adjunctive treatments for refractory hypoxemia, and 28-day mortality. Of a total of 1090 patients, 88 (8.1%) were classified as having COPD. The ventilation parameters were not different between COPD patients and non-COPD patients, except for FiO2, which was higher in COPD patients. Prone positioning was applied more often in COPD patients. COPD patients had higher 28-day mortality than non-COPD patients. COPD had an independent association with 28-day mortality. In this cohort of patients who received invasive ventilation for COVID-19, only FiO2 settings and the use of prone positioning were different between COPD patients and non-COPD patients. COPD patients had higher mortality than non-COPD patients.
DOCUMENT
The aim of this analysis was to compare ventilation management and outcomes in invasively ventilated patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19) between the first and second wave in the Netherlands. This is a post hoc analysis of two nationwide observational COVID-19 studies conducted in quick succession. The primary endpoint was ventilation management. Secondary endpoints were tracheostomy use, duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), and mortality. We used propensity score matching to control for observed confounding factors. This analysis included 1122 patients from the first and 568 patients from the second wave. Patients in the second wave were sicker, had more comorbidities, and had worse oxygenation parameters. They were ventilated with lower positive end-expiratory pressure and higher fraction inspired oxygen, had a lower oxygen saturation, received neuromuscular blockade more often, and were less often tracheostomized. Duration of ventilation was shorter, but mortality rates were similar. After matching, the fraction of inspired oxygen was lower in the second wave. In patients with acute hypoxemic respiratory failure due to COVID-19, aspects of respiratory care and outcomes rapidly changed over the successive waves.
DOCUMENT
Background: Ventilation management may differ between COVID–19 ARDS (COVID–ARDS) patients and patients with pre–COVID ARDS (CLASSIC–ARDS); it is uncertain whether associations of ventilation management with outcomes for CLASSIC–ARDS also exist in COVID–ARDS. Methods: Individual patient data analysis of COVID–ARDS and CLASSIC–ARDS patients in six observational studies of ventilation, four in the COVID–19 pandemic and two pre–pandemic. Descriptive statistics were used to compare epidemiology and ventilation characteristics. The primary endpoint were key ventilation parameters; other outcomes included mortality and ventilator–free days and alive (VFD–60) at day 60. Results: This analysis included 6702 COVID–ARDS patients and 1415 CLASSIC–ARDS patients. COVID–ARDS patients received lower median VT (6.6 [6.0 to 7.4] vs 7.3 [6.4 to 8.5] ml/kg PBW; p < 0.001) and higher median PEEP (12.0 [10.0 to 14.0] vs 8.0 [6.0 to 10.0] cm H2O; p < 0.001), at lower median ΔP (13.0 [10.0 to 15.0] vs 16.0 [IQR 12.0 to 20.0] cm H2O; p < 0.001) and higher median Crs (33.5 [26.6 to 42.1] vs 28.1 [21.6 to 38.4] mL/cm H2O; p < 0.001). Following multivariable adjustment, higher ΔP had an independent association with higher 60–day mortality and less VFD–60 in both groups. Higher PEEP had an association with less VFD–60, but only in COVID–ARDS patients. Conclusions: Our findings show important differences in key ventilation parameters and associations thereof with outcomes between COVID–ARDS and CLASSIC–ARDS. Trial registration: Clinicaltrials.gov (identifier NCT05650957), December 14, 2022.
DOCUMENT