The aim of this study was to test the inter- and intraobserver reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating gait. The study involved 24 patients ages 3 to 10 years (mean age 6.7 years) with an abnormal gait caused by CP. They were all able to walk independently with or without walking aids. Of the children 15 had spastic diplegia and 9 had spastic hemiplegia. With a minimum time interval of 6 weeks, video recordings of the gait of these 24 patients were scored twice by three independent observers using the PRS and the GAIT scale. The study showed that both the GAIT scale and the PRS had excellent intraobserver reliability but poor interobserver reliability for children with CP. In the total scores of the GAIT scale and the PRS, the three observers showed systematic differences. Consequently, the authors recommend that longitudinal assessments of a patient should be done by one observer only.
LINK
In order to achieve a level of community involvement and physical independence, being able to walk is the primary aim of many stroke survivors. It is therefore one of the most important goals during rehabilitation. Falls are common in all stages after stroke. Reported fall rates in the chronic stage after stroke range from 43 to 70% during one year follow up. Moreover, stroke survivors are more likely to become repeated fallers as compared to healthy older adults. Considering the devastating effects of falls in stroke survivors, adequate fall risk assessment is of paramount importance, as it is a first step in targeted fall prevention. As the majority of all falls occur during dynamic activities such as walking, fall risk could be assessed using gait analysis. It is only recent that technology enables us to monitor gait over several consecutive days, thereby allowing us to assess quality of gait in daily life. This thesis studies a variety of gait assessments with respect to their ability to assess fall risk in ambulatory chronic stroke survivors, and explores whether stroke survivors can improve their gait stability through PBT.
DOCUMENT
The purpose of the study was to assess the accuracy of estimates of step frequency from trunk acceleration data analyzed with commonly used algorithms and time window lengths, at a wide range of gait speeds. Twenty healthy young subjects performed an incremental treadmill protocol from 1 km/h up to 6 km/h, with steps of 1 km/h. Each speed condition was maintained for two minutes. A waist worn accelerometer recorded trunk accelerations, while video analysis provided the correct number of steps taken during each gait speed condition. Accuracy of two commonly used signal analysis methods was examined with several different time windows.
DOCUMENT
Objectives: To investigate immediate changes in walking performance associated with three implicit motor learning strategies and to explore patient experiences of each strategy. Design: Participants were randomly allocated to one of three implicit motor learning strategies. Within-group comparisons of spatiotemporal parameters at baseline and post strategy were performed. Setting: Laboratory setting. Subjects: A total of 56 community-dwelling post-stroke individuals. Interventions: Implicit learning strategies were analogy instructions, environmental constraints and action observation. Different analogy instructions and environmental constraints were used to facilitate specific gait parameters. Within action observation, only videotaped gait was shown. Main measures: Spatiotemporal measures (speed, step length, step width, step height) were recorded using Vicon 3D motion analysis. Patient experiences were assessed by questionnaire. Results: At a group level, three of the four analogy instructions (n=19) led to small but significant changes in speed (d=0.088m/s), step height (affected side d=0.006m) and step width (d=–0.019m), and one environmental constraint (n=17) led to significant changes in step width (d=–0.040m). At an individual level, results showed wide variation in the magnitude of changes. Within action observation (n=20), no significant changes were found. Overall, participants found it easy to use the different strategies and experienced some changes in their walking performance. Conclusion: Analogy instructions and environmental constraints can lead to specific, immediate changes in the walking performance and were in general experienced as feasible by the participants. However, the response of an individual patient may vary quite considerably.
DOCUMENT
Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. Aim: To examine how different modes of arm swing affect gait stability. Method: Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. Results: We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior–posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Discussion: Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Conclusion: Excessive arm swing significantly increases local dynamic stability of human gait.
DOCUMENT
Community-dwelling stroke survivors tend to become less physically active over time. There is no ‘gold standard’ to measure walking activity in this population. Assessment of walking activity generally involves subjective or observer-rated instruments. Objective measuring with an activity monitor, however, gives more insight into actual walking activity. Although several activity monitors have been used in stroke patients, none of these include feedback about the actual walking activity. FESTA (FEedback to Stimulate Activity) determines number of steps, number of walking bouts, covered distance and ambulatory activity profiles over time and also provides feedback about the walking activity to the user and the therapist.
DOCUMENT
Background/Aims: Analogy learning, a motor learning strategy that uses biomechanical metaphors to chunk together explicit rules of a to-be-learned motor skill. This proof-of-concept study aims to establish the feasibility and potential benefits of analogy learning in enhancing stride length regulation in people with Parkinson’s. Methods: Walking performance of thirteen individuals with Parkinson’s was analysed using a Codamotion analysis system. An analogy instruction; “following footprints in the sand” was practiced over 8 walking trials. Single- and dual- (motor and cognitive) task conditions were measured before training, immediately after training and 4-weeks post training. Finally, an evaluation form was completed to examine the interventions feasibility. Findings: Data from 12 individuals (6 females and 6 males, mean age 70, Hoehn and Yahr I-III) were analysed, one person withdrew due to back problems. In the single task condition, statistically and clinically relevant improvements were obtained. A positive trend towards reducing dual task costs after the intervention was demonstrated, supporting the relatively implicit nature of the analogy. Participants reported that the analogy was simple to use and became easier over time. Conclusions: Analogy learning is a feasible and potentially implicit (i.e. reduced working memory demands) intervention to facilitate walking performance in people with Parkinson’s.
DOCUMENT
Purpose: This study examined the effects of a giant (4×3 m) exercising board game intervention on ambulatory physical activity (PA) and a broader array of physical and psychological outcomes among nursing home residents. Materials and methods: A quasi-experimental longitudinal study was carried out in two comparable nursing homes. Ten participants (aged 82.5±6.3 and comprising 6 women) meeting the inclusion criteria took part in the 1-month intervention in one nursing home, whereas 11 participants (aged 89.9±3.1 with 8 women) were assigned to the control group in the other nursing home. The giant exercising board game required participants to per-form strength, flexibility, balance and endurance activities. The assistance provided by an exercising specialist decreased gradually during the intervention in an autonomy-oriented approach based on the self-determination theory. The following were assessed at baseline, after the intervention and after a follow-up period of 3 months: PA (steps/day and energy expenditure/day with ActiGraph), cognitive status (mini mental state examination), quality of life (EuroQol 5-dimensions), motivation for PA (Behavioral Regulation in Exercise Questionnaire-2), gait and balance (Tinetti and Short Physical Performance Battery), functional mobility (timed up and go), and the muscular isometric strength of the lower limb muscles. Results and conclusion: In the intervention group, PA increased from 2,921 steps/day at baseline to 3,358 steps/day after the intervention (+14.9%, P=0.04) and 4,083 steps/day (+39.8%, P=0.03) after 3 months. Energy expenditure/day also increased after the intervention (+110 kcal/day, +6.3%, P=0.01) and after 3 months (+219 kcal/day, +12.3%, P=0.02). Quality of life (P<0.05), balance and gait (P<0.05), and strength of the ankle (P<0.05) were also improved after 3 months. Such improvements were not observed in the control group. The preliminary results are promising but further investigation is required to confirm and evaluate the long-term effectiveness of PA interventions in nursing homes.
DOCUMENT
Due to a lack of transparency in both algorithm and validation methodology, it is diffcult for researchers and clinicians to select the appropriate tracker for their application. The aim of this work is to transparently present an adjustable physical activity classification algorithm that discriminates between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters, the algorithm performance can be optimized for applications using different target populations and locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP) involves another 20. Data segmentation window size and amount of physical activity threshold are optimized. The sensor orientation threshold does not vary. The validation of the algorithm is performed on 10 participants who perform the FAP and on 10 participants who perform the SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm performance. Standing and sedentary behavior are classified within acceptable limits (+/- 10% error) both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits under fixed conditions but has some limitations under simulated free-living conditions. We propose that this approach should be adopted by developers of activity trackers to facilitate the activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable algorithm potentially could contribute to the fast realization of new applications.
DOCUMENT
Abstract Background: People with severe mental illness (SMI) often suffer from long-lasting symptoms that negatively influence their social functioning, their ability to live a meaningful life, and participation in society. Interventions aimed at increasing physical activity can improve social functioning, but people with SMI experience multiple barriers to becoming physically active. Besides, the implementation of physical activity interventions in day-to-day practice is difficult. In this study, we aim to evaluate the effectiveness and implementation of a physical activity intervention to improve social functioning, mental and physical health. Methods: In this pragmatic stepped wedge cluster randomized controlled trial we aim to include 100 people with SMI and their mental health workers from a supported housing organization. The intervention focuses on increasing physical activity by implementing group sports activities, active guidance meetings, and a serious game to set physical activity goals. We aim to decrease barriers to physical activity through active involvement of the mental health workers, lifestyle courses, and a medication review. Participating locations will be divided into four clusters and randomization will decide the start of the intervention. The primary outcome is social functioning. Secondary outcomes are quality of life, symptom severity, physical activity, cardiometabolic risk factors, cardiorespiratory fitness, and movement disturbances with specific attention to postural adjustment and movement sequencing in gait. In addition, we will assess the implementation by conducting semi-structured interviews with location managers and mental health workers and analyze them by direct content analysis. Discussion: This trial is innovative since it aims to improve social functioning in people with SMI through a physical activity intervention which aims to lower barriers to becoming physically active in a real-life setting. The strength of this trial is that we will also evaluate the implementation of the intervention. Limitations of this study are the risk of poor implementation of the intervention, and bias due to the inclusion of a medication review in the intervention that might impact outcomes. Trial registration: This trial was registered prospectively in The Netherlands Trial Register (NTR) as NTR NL9163 on December 20, 2020. As the The Netherlands Trial Register is no longer available, the trial can now be found in the International Clinical Trial Registry Platform via: https:// trial search. who. int/ Trial2. aspx? Trial ID= NL9163.
DOCUMENT