BackgroundA modified version of the Berg Balance Scale (mBBS) was developed for individuals with intellectual and visual disabilities (IVD). However, the concurrent and predictive validity has not yet been determined.AimThe purpose of the current study was to evaluate the concurrent and predictive validity of the mBBS for individuals with IVD.MethodFifty-four individuals with IVD and Gross Motor Functioning Classification System (GMFCS) Levels I and II participated in this study. The mBBS, the Centre of Gravity (COG), the Comfortable Walking Speed (CWS), and the Barthel Index (BI) were assessed during one session in order to determine the concurrent validity. The percentage of explained variance was determined by analyzing the squared multiple correlation between the mBBS and the BI, COG, CWS, GMFCS, and age, gender, level of intellectual disability, presence of epilepsy, level of visual impairment, and presence of hearing impairment. Furthermore, an overview of the degree of dependence between the mBBS, BI, CWS, and COG was obtained by graphic modelling. Predictive validity of mBBS was determined with respect to the number of falling incidents during 26 weeks and evaluated with Zero-inflated regression models using the explanatory variables of mBBS, BI, COG, CWS, and GMFCS.ResultsThe results demonstrated that two significant explanatory variables, the GMFCS Level and the BI, and one non-significant variable, the CWS, explained approximately 60% of the mBBS variance. Graphical modelling revealed that BI was the most important explanatory variable for mBBS moreso than COG and CWS. Zero-inflated regression on the frequency of falling incidents demonstrated that the mBBS was not predictive, however, COG and CWS were.ConclusionsThe results indicated that the concurrent validity as well as the predictive validity of mBBS were low for persons with IVD.
Background: Knowledge concerning the feasibility and effects of progressive resistance training (PRT) for persons with intellectual disabilities and visual impairment who are categorized in Gross Motor Function Classification System (GMFCS) Level 1 is limited. The aim of our study was to evaluate feasibility and effect of PRT on participants' Quadriceps strength and personal goals.Methods: Eight Participants followed a PRT program for 10 weeks. Feasibility wasdetermined by percentage of attendance and compliance. The effect of PRT was analyzed with a linear mixed model (p < 0.05) and by normalized bootstrap (95% CI).Results: Participants attended 87.8% of the sessions and trained according to thePRT program, indicating sufficient compliance. Quadriceps strength increased significantly by 69%, and participants' personal goals were achieved.Conclusion: PRT is a feasible and potentially effective method for increasingQuadriceps strength as well as achieving personal goals in persons with intellectual disabilities and visual impairment with GMFCS Level 1.
Heritable Connective Tissue Disorders (HCTD) show an overlap in the physical features that can evolve in childhood. It is unclear to what extent children with HCTD experience burden of disease. This study aims to quantify fatigue, pain, disability and general health with standardized validated questionnaires.METHODS: This observational, multicenter study included 107 children, aged 4-18 years, with Marfan syndrome (MFS), 58%; Loeys-Dietz syndrome (LDS), 7%; Ehlers-Danlos syndromes (EDS), 8%; and hypermobile Ehlers-Danlos syndrome (hEDS), 27%. The assessments included PROMIS Fatigue Parent-Proxy and Pediatric self-report, pain and general health Visual-Analogue-Scales (VAS) and a Childhood Health Assessment Questionnaire (CHAQ).RESULTS: Compared to normative data, the total HCTD-group showed significantly higher parent-rated fatigue T-scores (M = 53 (SD = 12), p = 0.004, d = 0.3), pain VAS scores (M = 2.8 (SD = 3.1), p < 0.001, d = 1.27), general health VAS scores (M = 2.5 (SD = 1.8), p < 0.001, d = 2.04) and CHAQ disability index scores (M = 0.9 (SD = 0.7), p < 0.001, d = 1.23). HCTD-subgroups showed similar results. The most adverse sequels were reported in children with hEDS, whereas the least were reported in those with MFS. Disability showed significant relationships with fatigue (p < 0.001, rs = 0.68), pain (p < 0.001, rs = 0.64) and general health (p < 0.001, rs = 0.59).CONCLUSIONS: Compared to normative data, children and adolescents with HCTD reported increased fatigue, pain, disability and decreased general health, with most differences translating into very large-sized effects. This new knowledge calls for systematic monitoring with standardized validated questionnaires, physical assessments and tailored interventions in clinical care.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).