Background: Both the Short Physical Performance Battery (SPPB) and daily life gait quality and quantity obtained from wearable sensors are used to measure functional status in older adults. It is generally assumed that they are interrelated and exchangeable, but this has not yet been established. Interchangeability of these measures would pave the way for remote monitoring of functional status.Research Question: Are the SPPB and daily life gait quality and quantity measures correlated in community-dwelling older adults?Methods: The SPPB and gait quality and quantity data of 229 community-dwelling adults of 65 years or older were collected. The SPPB is a combined score of the Three Stage Balance test, Four Meter Walk test, and Five Times Sit to Stand test and ranges from 0 to 12. Participants wore a tri-axial inertial sensor for one week to assess gait quality (e.g. gait stability and smoothness) and quantity (e.g. number of strides). Correlation coefficients between SPPB scores and gait quality and quantity measures were assessed using Spearman's correlation.Results: The median age of the study population was 76.2 years (IQR 72.6-81.0), and 76 % were women (n=175). The median SPPB score was 10 (IQR 8-11). Spearman's correlation coefficients between the SPPB and gait quality and quantity measures were all below 0.3.Significance: A possible explanation for the observed weak correlations is that the SPPB reflects one's maximal capacity, while gait quality and quantity reflect the submaximal performance in daily life. The SPPB and gait quality and quantity seem therefore distinct constructs with complementary value, rather than interchangeable. A more comprehensive understanding of functional status might be achieved by combining the SPPB assessment of standardized activities with the evaluation of inertial sensor measurements obtained during daily life activities.
Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
Background: Improved preferred gait speed in older adults is associated with increased survival rates. There are inconsistent findings in clinical trials regarding effects of exercise on preferred gait speed, and heterogeneity in interventions in the current reviews and meta-analyses. Objective: to determine the meta-effects of different types or combinations of exercise interventions from randomized controlled trials on improvement in preferred gait speed. Methods: Data sources: A literature search was performed; the following databases were searched for studies from 1990 up to 9 December 2013: PubMed, EMBASE, EBSCO (AMED, CINAHL, ERIC, Medline, PsycInfo, and SocINDEX), and the Cochrane Library. Study eligibility criteria: Randomized controlled trials of exercise interventions for older adults ≥ 65 years, that provided quantitative data (mean/SD) on preferred gait speed at baseline and post-intervention, as a primary or secondary outcome measure in the published article were included. Studies were excluded when the PEDro score was ≤4, or if participants were selected for a specific neurological or neurodegenerative disease, Chronic Obstructive Pulmonary Disease, cardiovascular disease, recent lower limb fractures, lower limb joint replacements, or severe cognitive impairments. The meta-effect is presented in Forest plots with 95 % confidence Study appraisal and synthesis methods: intervals and random weights assigned to each trial. Homogeneity and risk of publication bias were assessed. Results: Twenty-five studies were analysed in this meta-analysis. Data from six types or combinations of exercise interventions were pooled into sub-analyses. First, there is a significant positive meta-effect of resistance training progressed to 70-80 % of 1RM on preferred gait speed of 0.13 [CI 95 % 0.09-0.16] m/s. The difference between intervention- and control groups shows a substantial meaningful change (>0.1 m/s). Secondly, a significant positive meta-effect of interventions with a rhythmic component on preferred gait speed of 0.07 [CI 95 % 0.03-0.10] m/s was found. Thirdly, there is a small significant positive meta-effect of progressive resistance training, combined with balance-, and endurance training of 0.05 [CI 95 % 0.00-0.09] m/s. The other sub-analyses show non-significant small positive meta-affects. Conclusions: Progressive resistance training with high intensities, is the most effective exercise modality for improving preferred gait speed. Sufficient muscle strength seems an important condition for improving preferred gait speed. The addition of balance-, and/or endurance training does not contribute to the significant positive effects of progressive resistance training. A promising component is exercise with a rhythmic component. Keeping time to music or rhythm possibly trains higher cognitive functions that are important for gait. Limitations: The focus of the present meta-analysis was at avoiding as much heterogeneity in exercise interventions. However heterogeneity in the research populations could not be completely avoided, there are probably differences in health status within different studies.