This study presents a methodology designed to optimize various parameters of each access point within a Multiple-Input Single-Output (MISO) Visible Light Communication (VLC) system. The primary objective is to enhance both power and spectral efficiencies. A MISO-VLC model is presented based on experimental evaluations and a problem formulation considering intermodulation distortions based on Orthogonal Frequency Division Multiplexing modulation. A Hybrid Multi-Objective Optimization (HMO) approach is proposed, combining the Non-Sorting Genetic Algorithm III (NSGA-III) and the Multi-objective Grey Wolf Optimization (MOGWO). The proposed HMO's success was validated by a 66 % reduction in transmitted power, maintaining the Error Vector Magnitude (EVM) performance metrics even at lower power transmission levels and minimizing the guard band to its lower bound.
DOCUMENT
In this paper, artificial intelligence tools are implemented in order to predict trajectory positions, as well as channel performance of an optical wireless communications link. Case studies for industrial scenarios are considered to this aim. In a first stage, system parameters are optimized using a hybrid multi-objective optimization (HMO) procedure based on the grey wolf optimizer and the non-sorting genetic algorithm III with the goal of simultaneously maximizing power and spectral efficiency. In a second stage, we demonstrate that a long short-term memory neural network (LSTM) is able to predict positions, as well as channel gain. In this way, the VLC links can be configured with the optimal parameters provided by the HMO. The success of the proposed LSTM architectures was validated by training and test root-mean square error evaluations below 1%.
LINK
The nonlinearity induced by light-emitting diodes in visible light communication (VLC) systems presents a challenge to the parametrization of orthogonal frequency division multiplexing (OFDM). The goal of the multi-objective optimization problem presented in this study is to maximize the transmitted power (superimposed LED bias-current and signal amplification) for both conventional and constant envelope (CE) OFDM while also maximizing spectral efficiency. The bit error rate (BER) metric is used to evaluate the optimization using the non-dominated sorting genetic algorithm II. Simulation results show that for a BER of 1×10 −3 , the signal-to-noise ratio (SNR) required decreases with the guard band due to intermodulation distortions. In contrast to SNR values of approximately 13 and 25 dB achieved by traditional OFDM-based systems, the VLC system with CE signals achieves a guard band of 6% of the signal bandwidth with required SNR values of approximately 10.8 and 24 dB for 4-quadrature amplitude modulation (QAM) and 16-QAM modulation orders, respectively.
DOCUMENT
A modified genetic algorithm (MGA) optimization procedure, alongside time series machine learning (ML) classifiers, is proposed to minimize handovers in a digital twin-based visible light communication (VLC) system. Frequent handovers have a direct impact on the overall performance of the VLC system due to the inherent connection downtime of a handover process. The handover scheme proposed in this article considers the receiver trajectory information to minimize handovers, maintaining the system performance below the forward error correction limit. Simulation results indicate that the proposed scheme outperforms a power-based handover scheme, achieving handover reductions of 42.47%. Therefore, the MGA combined to the ML models approach is an effective means of minimizing handovers, as well as improving overall VLC system performance.
DOCUMENT
Het plan van aanpak gepresenteerd in deze handreiking is bedoeld als leidraad voor het ontwerpen, ontwikkelen, implementeren en evalueren van verschillende Learning Communities binnen het RAAK-5 project Het Nieuwe Telen: gas erop! Het is bedoeld om zowel inzichten als instrumenten te bieden aan coördinatoren en facilitatoren voor de implementatie van de lokale Learning Communities gedurende het project. Deze handreiking is een noodzakelijke aanvulling op het project vanwege de prominente rol van Learning Communities binnen het project, maar ook omdat er geen wetenschappelijk gebaseerde ontwerpprincipes voor LC’s te vinden zijn. Er zijn veel projecten die Learning Communities uitvoeren, maar een grondige zoektocht naar literatuur en internetbronnen resulteerde niet in ontwerpprincipes.
DOCUMENT
The transmission of constant-envelope orthogonal frequency division multiplexing (CE-OFDM) signals, based on electrical phase modulation, was shown to improve the tolerance to noise and the nonlinearity introduced by light-emitting diodes (LEDs) in visible light communication (VLC) systems. This allows the application of larger signal amplitudes despite the LED-nonlinearities and, thus, data transmission over larger distances. The performance of a 9.51 Mb/s CE-OFDM based system, with 16-QAM subcarrier mapping in a bandwidth of 5 MHz, was compared to the efficiency of a conventional OFDM system. The error vector magnitude (EVM) was reduced from 17.5% to 10% (which is below the FEC limit), an improvement around 43%, when the CE-OFDM scheme was applied in the VLC link of 6 m. A good performance was achieved by the CE-OFDM based VLC system in a link of 8 m, when 4-QAM was used as subcarrier mapping.
DOCUMENT
The performance of a visible light communication (VLC) system based on power domain non-orthogonal multiple access (PD-NOMA) is experimentally evaluated in this paper. The simplicity of the adopted non-orthogonal scheme is provided by the fixed power allocation method at the transmitter and the single one-tap equalization executed before the successive interference cancellation at the receiver. The experimental results proved the successful transmission of the PD-NOMA scheme with three users in VLC links of up to 2.5 m, after a proper choice of the optical modulation index. All users achieved error-vector magnitude (EVM) performances below FEC limits in all evaluated transmission distances. At 2.5 m, the user with the best performance reaches an EVM = 2.3 %.
DOCUMENT
Voor het vierde achtereenvolgende jaar organiseerde SURF Educatie de EduTrip, waaraan dit jaar maar liefst ruim 100 mensen uit het Nederlandse hoger onderwijs en aan het onderwijs gerelateerde bedrijfsleven deelnamen. Doel van het Nederlandse bezoek aan EDUCAUSE was allereerst om via netwerken en het leggen van contacten met collega s, gezamenlijk zicht te krijgen op de huidige stand van zaken rondom ICT in de Amerikaanse instellingen voor hoger onderwijs. Op basis hiervan is dit boekje tot stand gekomen.
DOCUMENT
Development of novel testing strategies to detect adverse human health effects is of interest to replace in vivo-based drug and chemical safety testing. The aim of the present study was to investigate whether physiologically based kinetic (PBK) modeling-facilitated conversion of in vitro toxicity data is an adequate approach to predict in vivo cardiotoxicity in humans. To enable evaluation of predictions made, methadone was selected as the model compound, being a compound for which data on both kinetics and cardiotoxicity in humans are available. A PBK model for methadone in humans was developed and evaluated against available kinetic data presenting an adequate match. Use of the developed PBK model to convert concentration–response curves for the effect of methadone on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in the so-called multi electrode array (MEA) assay resulted in predictions for in vivo dose–response curves for methadone-induced cardiotoxicity that matched the available in vivo data. The results also revealed differences in protein plasma binding of methadone to be a potential factor underlying variation between individuals with respect to sensitivity towards the cardiotoxic effects of methadone. The present study provides a proof-of-principle of using PBK modeling-based reverse dosimetry of in vitro data for the prediction of cardiotoxicity in humans, providing a novel testing strategy in cardiac safety studies.
DOCUMENT
For the fourth successive year SURF Educatie (SURF Education) organised the EduTrip, in which this year over 100 people from Dutch higher education and education-related businesses took part. The purpose of the Dutch visit to EDUCAUSE was first and foremost to get a shared view of the present state of affairs surrounding ICT in American institutions for higher education by means of the ability to network and establish contacts with our counterparts there. Based on this, one would subsequently be able to formulate a number of recommendations for higher education in the Netherlands.
DOCUMENT