INTRODUCTION: It is difficult to adjust fluid balance adequately in patients with severe burns due to various physical changes. B-type natriuretic peptide (BNP) is emerging as a potential marker of hydration state. Proteinuria is used as a predictor of outcome in severe illness and might correlate to systemic capillary leakage. This study investigates whether combining BNP and proteinuria can be used as a guide for individualized resuscitation and as a predictor of outcome in patients with severe burns.METHODS: From 2006 to 2009, 38 consecutive patients (age 47 ± 15 years, 74% male) with severe burns were included and followed for 20 days. All had normal kidney function at admission. BNP and proteinuria were routinely measured. Ordered and actually administered fluid resuscitation volumes were recorded. The Sequential Organ Failure Assessment (SOFA) score was used as the measure of outcome.RESULTS: BNP increased during follow-up, reaching a plateau level at Day 3. Based on median BNP levels at Day 3, patients were divided into those with low BNP and those with high BNP levels. Both groups had comparable initial SOFA scores. Patients with high BNP received less fluid from Days 3 to 10. Furthermore, patients with a high BNP at Day 3 had less morbidity, reflected by lower SOFA scores on the following days. To minimize effects of biological variability, proteinuria on Days 1 and 2 was averaged. By dividing the patients based on median BNP at Day 3 and median proteinuria, patients with high BNP and low proteinuria had significantly lower SOFA scores during the entire follow-up period compared to those patients with low BNP and high proteinuria.CONCLUSIONS: Patients with higher BNP levels received less fluid. This might be explained by a lower capillary leakage in these patients, resulting in more intravascular fluid and consequently an increase in BNP. In combination with low proteinuria, possibly reflecting minimal systemic capillary leakage, a high BNP level was associated with a better outcome. BNP and proteinuria have prognostic potential in severely burned patients and may be used to adjust individual resuscitation.
Het pakket bestaat uit twee delen: Deel A: Het achtergronddocument: hierin worden u allerlei theoretische en procedurele gegevens aangereikt die van belang zijn om goed met het interventiepakket te kunnen werken. Deel B: Het werkboek: dit werkboek biedt u praktische ondersteuning om in samenwerking met de patiënt effectief met het zelfverwondende gedrag om te gaan. Het werkboek kan als WORD-document digitaal worden opgeslagen. Denkt u hierbij vanzelfsprekend aan de privacybescherming van de patiënt. Bij het werkboek behoren een aantal bijlagen.
MULTIFILE
Bespreking van onderzoek van Todor Stefanov in ‘Waar wij trots op zijn. De ontdekkingen van 2011’ van de Universiteit Leiden Faculteit der Wiskunde & Natuurwetenschappen. De Bulgaar Todor Stefanov onderzoekt methoden en middelen voor het ontwerpen en programmeren van multiprocessorsystemen die zijn geïntegreerd in een enkele chip. Dit om de verwerking van signalen en beelden in bijvoorbeeld smartphones te verbeteren. En dat moet snel, want ieder jaar komt er wel weer een nieuwe generatie op de markt.
Recente ontwikkelingen op het gebied van microfluïdica en microreactoren maken het mogelijk verschillende laboratoriumtesten te miniaturiseren.Deze zogenaamde “lab-on-a-chip” technologieën maken diagnostische testen buiten het laboratorium (point of care testing) mogelijk.Voor medische testen hoeven artsen geen monsters meer op te sturen naar een gespecialiseerd laboratorium en te wachten op de uitslag, de gegevens kunnen meteen gelezen worden en eventuele therapie direct gestart of daarop aangepast worden. Desondanks loopt de toepassing van de “lab-on-a-chip” technologie in de praktijk achter bij de verwachtingen. De omzetting van idee tot device vergt vaak grote investeringen. Voor het aantonen van de toepasbaarheid van een idee zijn veelal al dure investeringen in productiemiddelen en geconditioneerde ruimten noodzakelijk, terwijl het benodigde geld voor de investeringen alleen verkregen kan worden als kan worden aangetoond dat het idee werkt (“valley of death”). Printtechnologieën kunnen op dat punt een uitkomst bieden. Inkjetprinten, plasmaprinten en 3D-printen zijn relatief eenvoudige, goedkope en flexibele technieken die bijna overal kunnen worden toegepast en ze zijn ook nog eens geschikt voor biologische materialen. In dit project willen we met een combinatie van verschillende printtechnieken (inkjet-, plasma- en 3D printen) een platform genereren waarmee MKBers middels prototypes de haalbaarheid van hun idee met betrekking tot een bio(medische) sensor kunnen aantonen. Door gebruik te maken van een innovatieve detectiemethode, recent ontwikkeld aan de Technische Universiteit Eindhoven, willen we een volledig geprinte sensor produceren die met een smartphone uit te lezen is. We zullen twee praktijkgerichte toepassingen als demonstrator uitwerken. Als eerste een sensor die een ernstige longontsteking van een onschuldige verkoudheid kan onderscheiden, door detectie van het ontstekingseiwit ‘C-reactief eiwit (CRP)’. Als tweede een sensor die snel en eenvoudig de spiegels van een nieuwe oncologische biomarker kan meten en gebruikt kan worden bij de diagnostiek van bepaalde soorten tumoren en het meten van de therapeutische respons.