In this paper, I explored how to research a sensitive topic such as gossip in organizations and used a narrative approach to illustrate the methodological and ethical issues that come up when considering a variety of research methods. I first attempted to conduct an ethnographic research on a project group from a Dutch university undergoing a major change. At the very beginning of the project, as a participant observer, I struggled to remain an outsider, or a “fly on the wall.” But as issues of power came into play and access became increasingly problematic, I moved towards the role of an “observing participant.” Therefore, in order to research gossip and some of the hidden dimensions of organizational life, I turned to auto- and self-ethnography as a way to regain access and greater authenticity. While following this route presented its share of ethical and methodological issues, it also provided valuable insights that could be of value to researchers attempting to study sensitive topics such as gossip in organizations. https://nsuworks.nova.edu/tqr/vol23/iss7/18 LinkedIn: https://www.linkedin.com/in/dominiquedarmon/
MULTIFILE
Despite the efforts of governments and firms, the construction industry is trailing other industries in labour productivity. Construction companies are interested in increasing their labour productivity, particularly when demand grows and construction firms cope with labour shortages. Off-site construction has proved to be a favourable policy to increase labour productivity. However, a complete understanding of the factors affecting construction labour productivity is lacking, and it is unclear which factors are influenced by off-site construction. This study developed a conceptual model describing how 15 factors influence the construction process and make a difference in labour productivity between off-site and on-site construction. The conceptual model shows that all 15 factors affect labour productivity in three ways: through direct effects, indirect effects and causal loops. The model is a starting point for further research to determine the impact of off-site construction on labour productivity.
MULTIFILE
In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
A transition to a circular economy is needed to revolutionize the construction sector and make it more sustainable for present and future generations. While the construction industry and the production of construction materials contribute to environmental pollution, they also offer great potential for addressing many environmental problems. Sheet materials are engineered wood boards that are produced from recycled or solid wood where an adhesive is used to bind the particles together, predominantly used in: Furniture manufacturing, Flooring application, Roofing, Wall sheathing. The most common binder for boards is urea-formaldehyde. Other binders may be used depending on the grade of board and its intended end-use. For example, melamine urea-formaldehyde, phenolic resins and polymeric diphenylmethane diisocyanate (PMDI) are generally used in boards that require improved moisture resistance. Formaldehyde is classified in the in the European Union as a carcinogen and it carries the hazard statement 'suspected of causing cancer'. In this project mycelium composites are developed as a formaldehyde-free, fully natural and biodegradable material with high potential to substitute these hazardous materials. The heat-press process, the feasibility of which was evaluated in a previous Kiem HBO project, is to be further developed towards a process where mycelium sheets with different thicknesses will be obtained. This is considered as a fundamental step to increase the material approachability to the market. Different Material manufacturing techniques are also considered to enable the increase of sample thicknesses and volume. Moreover, a business study will be incorporated to allow further understanding of the material market potential. The consortium composition of V8 Architects, QbiQ, Fairm, Verbruggen Paddestoelen BV, and CoEBBE merges different expertise and guarantees the consideration of the whole material production chain. The research will contribute to bring mycelium composites a step closer to the market, giving them visibility and increasing the possibility to a commercial breakthrough.
Aerogel fibers consist of up to 99.9% of air which leads to outstanding insulation proper-ties for e.g. house construction. The simple use of aerogel fibers as wallpaper could lead to 25% energy savings. According to calculations of Advanced Manufacturing Office, energy savings of 1% saves 7500 million gallons of gasoline every year in the USA which equals, depending on the oil price, more than 18 billon USD. In this KIEM project, the cellulose purity needed to be able to spin cellulose into a fila-ment for aerogel production will be determined. Cellulose is the most abundant polymer on the planet. In principle, cellulose-based aerogels could replace petroleum-based and partly toxic polystyrene which is currently used for insulation purposes and which leads to toxic waste. The cellulosic starting material is generated via the “Beta process” as developed by a company called DSD. The “Beta process” offers an efficient way of generating ethanol from sugar beets. The by-product of that process contains cellulose, pectines and hemi-cellulose. To be able to use this mixture for wet spinning, this mixture needs to be puri-fied. Researchers and students from Zuyd University of Applied Sciences will, in collabora-tion with DSD, pursue the purification of the waste stream material in the labs of the Centre of Expertise CHILL. Next, the obtained cellulose grades will be processed as spinning dope in a wet spinning process on lab scale with up to 60 ml per batch at AMI-BM. The results will be used as feedback for the purification process. Several possible partners such as DSD, ACRRES (Application Center for Renewable Resources), Technoforce (extraction), Greenfields (fermentation) and VAM (washing in-stallations) show high interest for the up-scaling of the process and for the validation and implementation in the built environment, showing the feasibility a follow-up project.