Waste collection is an important volume in city logistics today. In the LEVV-LOGIC project the Amsterdam University of Applied Sciences (NL) performed research on waste and the potential use of light commercial vehicles for waste collection in cities.
DOCUMENT
This paper presents challenges in city logistics for circular supply chains of e-e-waste. Efficient e-waste management is one of the strategies to save materials, critical minerals, and precious metals. E-waste collection and recycling have gained attention recently due to lower collection and recycling rates. However, implementing circular urban supply chains is a significant economic transformation that can only work if coordination decisions are solved between the actors involved. On the one hand, this requires the implementation of efficient urban collection technologies, where waste collection companies collaborate with manufacturers, urban waste treatment specialists, and city logistics service providers supported by digital solutions for visibility and planning. On the other hand, it also requires implementing urban and regional ecosystems connected by innovative CO2-neutral circular city logistics systems. These systems must smoothly and sustainably manage the urban and regional flow of resources and data, often at a large scale and with interfaces between industrial processes, private, and public actors. This paper presents future research questions from a city logistics perspective based on a European project aimed at developing a blueprint for systemic solutions for the circularity of plastics from applications of rigid PU foams used as insulation material in refrigerators.
MULTIFILE
From a circular standpoint it is interesting to reuse as much as possible construction and demolition waste (CDW) into new building projects. In most cases CDW will not be directly reusable and will need to be processed and stored first. In order to turn this into a successful business case CDW will need to be reused on a large scale. In this paper we present the concept of a centralized and coordinated location in the City of Utrecht where construction and demolition waste is collected, sorted, worked, stored for reuse, or shipped elsewhere for further processing in renewed materials. This has expected advantages for the amount of material reuse, financial advantages for firms and clients, generating employability in the logistics and processing of materials, optimizing the transport and distribution of materials through the city, and thus the reduction of emissions and congestion. In the paper we explore the local facility of a Circular Hub, and the potential effects on circular reuse, and other effects within the City of Utrecht.
DOCUMENT
Little progress has been made in recent years toward achieving a fully circular economy by 2050. Implementing circular urban supply chains is a major economic transformation that can only work if significant coordination problems between the actors involved are solved. On the one hand, this requires the implementation of efficient urban collection technologies, where process industries collaborate hand-in-hand with manufacturers, urban waste treatment, and city logistics specialists and are supported by digital solutions for visibility and planning. But on the other hand, it also requires implementing regional and urban ecosystems connected by innovative CO2-neutral circular city logistics systems smoothly and sustainably managing the regional flow of resources and data, often at large and with interfaces between industrial processes and private and private and public actors. What are relevant research questions from a city logistics perspective?
MULTIFILE
from the article: "Abstract The way in which construction logistics is organised has considerable impact on production flow, transportation efficiency, greenhouse gas emissions and congestion, particularly in urban areas such as city centres. In cities such as London and Amsterdam municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. This paper reports on an ongoing research project applying and assessing developments in the field of construction logistics in the Netherlands. The cases include contractors and third party logistics providers applying consolidation centres and dedicated software solutions to increase transportation efficiency. The case show various results of JIT logistics management applied to urban construction projects leading to higher transportation efficiencies, and reduced environmental impact and increased production efficiency on site. The data collections included to-site en on-site observations, measurement and interviews. The research has shown considerable reductions of vehicles to deliver goods and to transport workers to site. In addition the research has shown increased production flow and less waste such as inventory, waiting and unnecessary motion on site."
DOCUMENT
Environmental concerns and urbanization pressures are driving demand for more efficient reverse logistics in city environments, where space constraints and dense populations create unique challenges. Polyurethanes (PU), used widely in insulation, electronics, and automotive industries, are integral to circular supply chain discussions due to their low recycling rates. This study emphasizes the challenges of urban reverse logistics for the disposal and collection of refrigerators in countries with different waste management systems. In the paper qualitative and quantitative methods have been applied. Based on the research carried out, it was shown how complex the reverse logistics process is in the city concerning waste such as fridges. It is influenced by, among other things, regulations at EU and national level, cooperation between stakeholders, consumer awareness and education, and real-time access to information on waste.
DOCUMENT
This study proposes a systematic value chain approach to helping businesses identify and eliminate inefficiencies. The authors have developed a robust framework, which food-sector entrepreneurs can use to increase profitability of an existing business or to create new profitable opportunities. The value chain approach provides win-win opportunities for players within the value chain. To test the robustness of the framework, the authors use food waste as an example of a critical inefficiency and apply it to two different food sector business cases, each operating in diverse conditions. Because the suggested framework addresses the core elements and parameters for the existence and competitiveness of a business, the model can be adapted to other sectors.
DOCUMENT
From the article: "ABSTRACT: The research group Supply Chain Redesign in the Built Environment of HU University of Applied Sciences is working on research that combines principles of the circular economy with open source architectural design & urban planning. The aim is finding new ways to re-use demolition waste and recycled materials in small scale urban area developments. And to “democratize” traditional processes in the built environment. Different recent studies have shown the potential benefits, such as a reduction of emissions. In “Hof van Cartesius”, a practical case-study in Utrecht, the ambitions and implications of this approach are being questioned, investigated and tested."
DOCUMENT
Western-European consumers have become not only more demanding on product availability in retail outlets but also on other food attributes such as quality, integrity, and safety. When (re)designing food supply-chain networks, from a logistics point of view, one has to consider these demands next to traditional efficiency and responsiveness requirements. The concept ‘quality controlled logistics’ (QCL) hypothesizes that if product quality in each step of the supply chain can be predicted in advance, goods flows can be controlled in a pro-active manner and better chain designs can be established resulting in higher product availability, constant quality, and less product losses. The paper discusses opportunities of using real-time product quality information for improvement of the design and management of ‘AgriFood Supply Chain Networks’, and presents a preliminary diagnostic instrument for assessment of ‘critical quality’ and ‘logistics control’ points in the supply chain network. Results of a tomato-chain case illustrate the added value of the QCL concept for identifying improvement opportunities in the supply chain as to increase both product availability and quality. Future research aims for the further development of the diagnostic instrument and the quantification of costs and benefits of QCL scenarios.
DOCUMENT
Research finds that the global market value of cargo bikes will hit 2.4 billion euros by 2031. Analysts with Future Market Insights assessing the growth of cargo bikes have placed the parcel courier industry as a key buyer of electric cargo bikes, forecasting that 43 per cent of sales could go to this industry. This growth is driven by city logistics trends, particularly as studies emerge showing the high efficiency and cost saving of the cargo bike versus the delivery van. It will not solely be direct incentives that drive uptake, however. The policy that restricts motoring and emissions is expected to be a key driver for businesses that seek profitability, with three-wheeled electric cargo bikes making up nearly half the market. The advance of e-bike technology has seen a strong rise in market share for assisted cargo bikes, now accounting for a 73 per cent market share. Potentially limiting the growth is the legislation governing the output and range of electric cargo bikes (FMI, 2021).To deal with the issues of faster delivery, clean delivery (low/zero emission) and less space in dense cities, the light electric freight vehicle (LEFV) can be–and is used more and more as–an innovative solution. The way logistics in urban areas is organized is being challenged, as the global growth of cities leads to more jobs, more businesses and more residents. As a result, companies, workers, residents and visitors demand more goods and produce more waste. More space for logistics activities in and around cities is at odds with the growing need for accommodation for people living and working in cities. Book: Innovations in Transport: Success, Failure and Societal Impacts
DOCUMENT