Article Evaluation of a Commercial Electronic Nose Based on Carbon Nanotube Chemiresistors
MULTIFILE
Study selection: Randomized controlled trials published after 2007 with (former) healthcare patients ≥ 21 years of age were included if physical activity was measured objectively using a wearable monitor for both feedback and outcome assessment. The main goal of included studies was promoting physical activity. Any concurrent strategies were related only to promoting physical activity. Data extraction: Effect sizes were calculated using a fixed-effects model with standardized mean difference. Information on study characteristics and interventions strategies were extracted from study descriptions. Data synthesis: Fourteen studies met the inclusion criteria (total n = 1,902), and 2 studies were excluded from meta-analysis. The overall effect size was in favour of the intervention groups (0.34, 95% CI 0.23–0.44, p < 0.01). Study characteristics and intervention strategies varied widely. Conclusion: Healthcare interventions using feedback on objectively monitored physical activity have a moderately positive effect on levels of physical activity. Further research is needed to determine which strategies are most effective to promote physical activity in healthcare programmes. Lay Abstract Wearable technology is progressively applied in health care and rehabilitation to provide objective insight into physical activity levels. In addition, feedback on physical activity levels delivered by wearable monitors might be beneficial for optimizing their physical activity. A systematic review and meta-analysis was conducted to evaluate the effectiveness of interventions using feedback on objectively measured physical activity in patient populations. Fourteen studies including 1902 patients were analyzed. Overall, the physical activity levels of the intervention groups receiving objective feedback on physical activity improved, compared to the control groups receiving no objective feedback. Mostly, a variety of other strategies were applied in the interventions next to wearable technology. Together with wearable technology, behavioral change strategies, such as goal-setting and action planning seem to be an important ingredient to promote physical activity in health care and rehabilitation. LinkedIn: https://www.linkedin.com/in/hanneke-braakhuis-b9277947/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.