Physical activity monitoring with wearable technology has the potential to support stroke rehabilitation. Little is known about how physical therapists use and value the use of wearable activity monitors. This cross-sectional study explores the use, perspectives, and barriers to wearable activity monitoring in day-to-day stroke care routines amongst physical therapists. Over 300 physical therapists in primary and geriatric care and rehabilitation centers in the Netherlands were invited to fill in an online survey that was developed based on previous studies and interviews with experts. In total, 103 complete surveys were analyzed. Out of the 103 surveys, 27% of the respondents were already using activity monitoring. Of the suggested treatment purposes of activity monitoring, 86% were perceived as useful by more than 55% of the therapists. The most recognized barriers to clinical implementation were lack of skills and knowledge of patients (65%) and not knowing what brand and type of monitor to choose (54%). Of the non-users, 79% were willing to use it in the future. In conclusion, although the concept of remote activity monitoring was perceived as useful, it was not widely adopted by physical therapists involved in stroke care. To date, skills, beliefs, and attitudes of individual therapists determine the current use of wearable technology.
DOCUMENT
Background: To experience external objects in such a way that they are perceived as an integral part of one's own body is called embodiment. Wearable technology is a category of objects, which, due to its intrinsic properties (eg, close to the body, inviting frequent interaction, and access to personal information), is likely to be embodied. This phenomenon, which is referred to in this paper as wearable technology embodiment, has led to extensive conceptual considerations in various research fields. These considerations and further possibilities with regard to quantifying wearable technology embodiment are of particular value to the mobile health (mHealth) field. For example, the ability to predict the effectiveness of mHealth interventions and knowing the extent to which people embody the technology might be crucial for improving mHealth adherence. To facilitate examining wearable technology embodiment, we developed a measurement scale for this construct. Objective: This study aimed to conceptualize wearable technology embodiment, create an instrument to measure it, and test the predictive validity of the scale using well-known constructs related to technology adoption. The introduced instrument has 3 dimensions and includes 9 measurement items. The items are distributed evenly between the 3 dimensions, which include body extension, cognitive extension, and self-extension.Methods: Data were collected through a vignette-based survey (n=182). Each respondent was given 3 different vignettes, describing a hypothetical situation using a different type of wearable technology (a smart phone, a smart wristband, or a smart watch) with the purpose of tracking daily activities. Scale dimensions and item reliability were tested for their validity and Goodness of Fit Index (GFI). Results: Convergent validity of the 3 dimensions and their reliability were established as confirmatory factor analysis factor loadings45 (>0.70), average variance extracted values40 (>0.50), and minimum item to total correlations50 (>0.40) exceeded established threshold values. The reliability of the dimensions was also confirmed as Cronbach alpha and composite reliability exceeded 0.70. GFI testing confirmed that the 3 dimensions function as intercorrelated first-order factors. Predictive validity testing showed that these dimensions significantly add to multiple constructs associated with predicting the adoption of new technologies (ie, trust, perceived usefulness, involvement, attitude, and continuous intention). Conclusions: The wearable technology embodiment measurement instrument has shown promise as a tool to measure the extension of an individual's body, cognition, and self, as well as predict certain aspects of technology adoption. This 3-dimensional instrument can be applied to mixed method research and used by wearable technology developers to improve future versions through such things as fit, improved accuracy of biofeedback data, and customizable features or fashion to connect to the users' personal identity. Further research is recommended to apply this measurement instrument to multiple scenarios and technologies, and more diverse user groups.
DOCUMENT
Study selection: Randomized controlled trials published after 2007 with (former) healthcare patients ≥ 21 years of age were included if physical activity was measured objectively using a wearable monitor for both feedback and outcome assessment. The main goal of included studies was promoting physical activity. Any concurrent strategies were related only to promoting physical activity. Data extraction: Effect sizes were calculated using a fixed-effects model with standardized mean difference. Information on study characteristics and interventions strategies were extracted from study descriptions. Data synthesis: Fourteen studies met the inclusion criteria (total n = 1,902), and 2 studies were excluded from meta-analysis. The overall effect size was in favour of the intervention groups (0.34, 95% CI 0.23–0.44, p < 0.01). Study characteristics and intervention strategies varied widely. Conclusion: Healthcare interventions using feedback on objectively monitored physical activity have a moderately positive effect on levels of physical activity. Further research is needed to determine which strategies are most effective to promote physical activity in healthcare programmes. Lay Abstract Wearable technology is progressively applied in health care and rehabilitation to provide objective insight into physical activity levels. In addition, feedback on physical activity levels delivered by wearable monitors might be beneficial for optimizing their physical activity. A systematic review and meta-analysis was conducted to evaluate the effectiveness of interventions using feedback on objectively measured physical activity in patient populations. Fourteen studies including 1902 patients were analyzed. Overall, the physical activity levels of the intervention groups receiving objective feedback on physical activity improved, compared to the control groups receiving no objective feedback. Mostly, a variety of other strategies were applied in the interventions next to wearable technology. Together with wearable technology, behavioral change strategies, such as goal-setting and action planning seem to be an important ingredient to promote physical activity in health care and rehabilitation. LinkedIn: https://www.linkedin.com/in/hanneke-braakhuis-b9277947/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE